• Title/Summary/Keyword: Reflectometer

Search Result 87, Processing Time 0.024 seconds

Vertical Neutron Reflectometer at HANARO (하나로 수직형 중성자 반사율 측정장치)

  • Lee J.S.;Lee C.H.;Hong K.P.;Choi B.H.;Choi Y.H.;Kim Y.J.;Shin K.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.132-137
    • /
    • 2005
  • Neutron reflectometer has been installed at HANARO, research reactor in Korea. It has vertical sample geometry and the wavelength of incident neutron beam is $2.459\;\AA$ Neutron fluxes at monochromator and sample position were $4.5\times10^9\;n/cm^2/sec,\;6.64\times10^6\;n/cm^2/sec4 those were measured by gold wire activation method. Also, some reference thin films such as d-PS, $SiO_2$ were measured and analyzedwith HANARO neutron reflectometer. As result of the work, it was certified that minimum reflectivity and available Q range were $10^{-6},\;and\;0.003\sim0.3\;\AA^{-1}$ respectively.

Embedded RF Test Circuits: RF Power Detectors, RF Power Control Circuits, Directional Couplers, and 77-GHz Six-Port Reflectometer

  • Eisenstadt, William R.;Hur, Byul
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Modern integrated circuits (ICs) are becoming an integrated parts of analog, digital, and radio frequency (RF) circuits. Testing these RF circuits on a chip is an important task, not only for fabrication quality control but also for tuning RF circuit elements to fit multi-standard wireless systems. In this paper, RF test circuits suitable for embedded testing are introduced: RF power detectors, power control circuits, directional couplers, and six-port reflectometers. Various types of embedded RF power detectors are reviewed. The conventional approach and our approach for the RF power control circuits are compared. Also, embedded tunable active directional couplers are presented. Then, six-port reflectometers for embedded RF testing are introduced including a 77-GHz six-port reflectometer circuit in a 130 nm process. This circuit demonstrates successful calibrated reflection coefficient simulation results for 37 well distributed samples in a Smith chart. The details including the theory, calibration, circuit design techniques, and simulations of the 77-GHz six-port reflectometer are presented in this paper.

A Square Coaxial Transmission Line with a Thin-Wire Inner Conductor to Measure the Absorbing Performance of Electromagnetic Absorbers

  • Kang, Tae-Weon;John Paul;John Paul
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • A low-frequency coaxial reflectometer(LCR) with a thin-wire inner conductor is designed and constructed to measure nondestructively the absorbing performance of electromagnetic absorbers in the frequency range of 10 MHz to 200 MHz. The LCR consists of a square coaxial transmission line and a network analyzer with a time-domain measurement capability. Inherent characteristics of a square coaxial line with a thin-wire inner conductor which deteriorate the impedance matching of the input port of the LCR are addressed. And the characteristics are improved by employing a multiwire inner conductor. Measured and calculated reflection losses of a flat ferrite tile absorber are presented.

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR

  • Li, Meng;Xiong, Xinglong;Zhao, Yifei;Ma, Yuzhao
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.413-421
    • /
    • 2018
  • We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.

Application of Electromagnetic Wave for Evaluating Necking Defects in Bored Piles (현장타설말뚝의 네킹 결함 평가를 위한 전자기파의 적용성 연구)

  • Lee, Jong-Sub;Song, Jung Wook;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The objective of this study is to demonstrate the suitability of electromagnetic waves for evaluating necking defects in bored piles using electromagnetic waves. Experiments are conducted with small-scaled defective model pile with diameter of 150 mm and length of 270 mm. Two necking defects are generated at the upper and lower positions on two different sides of the model pile, respectively. The other two necking defects are generated at the upper and lower positions on the same side of the model pile. Electrical wires are installed alongside the stainless steel wire of a steel cage to configure a two-conductor transmission line. A time-domain reflectometer is used to generate and defect electromagnetic waves. The experimental results show that electromagnetic waves are reflected at the necking defects and the end of the model pile. In addition, calculated defect locations are almost the same as actual defect locations. This study demonstrates that electromagnetic waves can be effective tool for evaluating necking defects in bored piles.

A Study on Super Resolution Algorithm to Improve Spatial Resolution of Optical Signals (광신호의 공간 해상도 향상을 위한 초 분해능 알고리즘 연구)

  • Lee, Byung-Jin;Yu, Bong-Guk;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2018
  • The optical time domain reflectometer (OTDR) is the most widely used method to monitor problems with currently installed optical fibers. The OTDR is an instrument designed to test the FTTx network and evaluates the physical properties of the fiber, such as transmission loss and connection loss. It is important to improve the spatial resolution in order to accurately grasp the optical path problems by using the OTDR. When the pulse width is less than twice the distance between the two reflectors, the signals reflected from the two reflectors are reflected without overlap, so that the reflected signal can be distinguished. However, when the pulse width is larger than twice the distance between the two reflectors, so that the reflected signal can not be distinguished. In order to overcome these limitations, this paper proposed a method of improving spatial resolution by applying a super resolution algorithm. As a result of the simulation, the resolution is improved when the super resolution algorithm is applied, and the event interval can be analyzed more precisely.

A Study on Detection Characteristic of Fiber Optic ROTDR Sensor for Real-Time Mornitoring (실시간감시를 위한 광섬유 ROTDR센서의 탐지특성 연구)

  • Park, Hyung-Jun;Kim, In-Soo
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.367-372
    • /
    • 2016
  • We Designed and Conduct a study on the basic intrusion detection research for outside intruder, which can determine the location and the weight of an intruder into infrastructure, by using Fiber-Optic ROTDR( Rayleigh Optical Time Domain Reflectometer) sensor, which are buried in the sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The weight could be detected as 4 grades, such as 20kg, 40kg, 60kg, and 80kg. which used long distance fiber for intruder detection on wide area. This sensor was possible for application of real-time monitoring of infrastructures.