• Title/Summary/Keyword: Reflectivity

Search Result 683, Processing Time 0.034 seconds

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar (이중편파 레이더의 강우 추정 알고리즘별 수문학적 적용성 평가)

  • Lee, Myungjin;Lee, Choongke;Yoo, Younghoon;Kwak, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data (VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석)

  • Lee, Yonggwan;Chung, Jeehun;Jang, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1385-1394
    • /
    • 2022
  • This study was to analyze the change in albedo by level-2 land cover map for 20 years(2002-2021) using MODerate resolution Imaging Spectroradiometer (MODIS) data. Also, the difference from the MODIS data was analyzed using the 10-year (2012-2021) data of Visible Infrared Imaging Radiometer Suite (VIIRS). For the albedo data of MODIS and VIIRS, daily albedo data, MCD43A3 and VNP43IA, of 500 m spatial resolution of sinusoidal tile grid produced by Bidirectional Reflectance Distribution Function (BRDF) model were prepared for the South Korea range. Reprojection was performed using the code written based on Python 3.9, and the nearest neighbor was applied as the resampling method. White sky albedo and black sky albedo of shortwave were used for analysis. As a result of 20-year albedo analysis using MODIS data, the albedo tends to rise in all land use. Compared to the 2000s (2002-2011), the average albedo of the 2010s (2012-2021) showed the most significant increase of 0.0027 in the forest area, followed by the grass increase of 0.0024. As a result of comparing the albedo of VIIRS and MODIS, it was found that the albedo of VIIRS was larger from 0.001 to 0.1, which was considered to be due to differences in the surface reflectivity according to the time of image capture and sensor characteristics.

A Study on the D-InSAR Method for Micro-deformation Monitoring in Railway Facilities (철도시설물 미소변형 모니터링을 위한 D-InSAR 기법 연구)

  • Kim, Byung-Kyu;Lee, Changgil;Kim, Winter;Yoo, Mintaek;Lee, Ilhwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.43-54
    • /
    • 2022
  • The settlement at the railroad foundation is often the leading cause of track irregularity and potential derailment. The control of such deformation is considered necessary in track maintenance practice. Nevertheless, the monitoring process performed by in situ surveying requires an excessive amount of manpower and cost. The InSAR, a remote sensing technique by RADAR satellite, is used to overcome such a burden. The PS-InSAR technique is preferred for a long-term precise monitoring method. However, this study aims to obtain relatively brief analysis results from only two satellite images using the D-InSAR technique, while a minimum of 25 images are required for PS-InSAR. This study verifies the precision of D-InSAR within a few millimeters by inspecting railroad facilities and land settlements in Korea Railroad Research Institute's test track with images from TerraSAR-X Satellite. Multiple corner reflectors were adopted and installed on an embankment and the building roof to raise the surface reflectivity. Those reflectors were slightly adjusted periodically to verify the detecting performance. The results revealed the optimum distance between corner reflectors. Further, the deformation of railway tracks, slopes, and concrete structures was analyzed successively. In conclusion, this study indicates that the D-InSAR technique effectively monitors the short-term deformation of a broad area such as railway structures.

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.

Enhancing GEMS Surface Reflectance in Snow-Covered Regions through Combined of GeoKompsat-2A/2B Data (천리안 위성자료 융합을 통한 적설역에서의 GEMS 지표면 반사도 개선 연구)

  • Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Sungwoo Park;Hyunkee Hong;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1497-1503
    • /
    • 2023
  • To address challenges in classifying clouds and snow cover when calculating ground reflectance in Near-UltraViolet (UV) wavelengths, this study introduces a methodology that combines cloud data from the Geostationary Environmental Monitoring Spectrometer (GEMS) and the Advanced Meteorological Imager (AMI)satellites for snow cover analysis. The proposed approach aims to enhance the quality of surface reflectance calculations, and combined cloud data were generated by integrating GEMS cloud data with AMI cloud detection data. When applied to compute GEMS surface reflectance, this fusion approach significantly mitigated underestimation issues compared to using only GEMS cloud data in snow-covered regions, resulting in an approximately 17% improvement across the entire observational area. The findings of this study highlight the potential to address persistent underestimation challenges in snow areas by employing fused cloud data, consequently enhancing the accuracy of other Level-2 products based on improved surface reflectivity.

Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm (연세에어로졸 알고리즘을 이용하여 정지궤도위성 센서(AHI, GOCI, MI)로부터 산출된 에어로졸 광학두께 비교 연구)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Go, Sujung;Lee, Seoyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.119-130
    • /
    • 2018
  • Aerosol Optical Properties (AOPs) are retrieved using the geostationary satellite instruments such as Geostationary Ocean Color Imager (GOCI), Meteorological Imager (MI), and Advanced Himawari Imager (AHI) through Yonsei AErosol Retrieval algorithm (YAER). In this study, the retrieved aerosol optical depths (AOD)s from each instrument were intercompared and validated with the ground-based sunphotometer AErosol Robotic NETwork (AERONET) data. As a result, the four AOD products derived from different instruments showed consistent results over land and ocean. However, AODs from MI and GOCI tend to be overestimated due to cloud contamination. According to the comparison results with AERONET, the percentage within expected errors (EE) are 36.3, 48.4, 56.6, and 68.2% for MI, GOCI, AHI-minimum reflectivity method (MRM), and AHI-estimated surface reflectance from shortwave Infrared (ESR) product, respectively. Since MI AOD is retrieved from a single visible channel, and adopts only one aerosol type by season, EE is relatively lower than other products. On the other hand, the AHI ESR is more accurate than the minimum reflectance method as used by GOCI, MI, and AHI MRM method in May and June when the vegetation is relatively abundant. These results are explained by the RMSE and the EE for each AERONET site. The ESR method result show to be better than the other satellite product in terms of EE for 15 out of 22 sites used for validation, and they are better than the other product for 13 sites in terms of RMSE. In addition, the error in observation time in each product is found by using characteristics of geostationary satellites. The absolute median biases at 00 to 06 Universal Time Coordinated (UTC) are 0.05, 0.09, 0.18, 0.18, 0.14, 0.09, and 0.10. The absolute median bias by observation time has appeared in MI and the only 00 UTC appeared in GOCI.

Characteristic of Raindrop Size Distribution Using Two-dimensional Video Disdrometer Data in Daegu, Korea (2차원 광학 우적계 자료를 이용한 대구지역 우적크기분포 특성 분석)

  • Bang, Wonbae;Kwon, Soohyun;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.511-521
    • /
    • 2017
  • This study analyzes Two-dimensional video disdrometer (2DVD) data while summer 2011-2012 in Daegu region and compares with Marshall and Palmer (MP) distribution to find out statistical characteristics and characteristics variability about drop size distribution (DSD) of Daegu region. As the characterize DSD of Daegu region, this study uses single moment parameters such as rainfall intensity (R), reflectivity factor (Z) and double moment parameters such as generalized characteristics number concentration ($N{_0}^{\prime}$) and generalized characteristics diameter ($D{_m}^{\prime}$). Also, this study makes an assumption that DSD function can be expressed as general gamma distribution. The results of analysis show that DSD of Daegu region has ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$, and c =2.37, ${\mu}=0.39$ on average. When the assumption of MP distribution is used, these figures then end up with the different characteristics; ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$ on average. The differences indicate liquid water content (LWC) of Daegu distribution is generally larger than MP distribution at equal Z. Second, DSD shape of Daegu distribution is concave upward. Other important facts are the characteristics of Daegu distribution change when Z changes. DSD shape of Daegu region changes concave downward (c =2.05~2.55, ${\mu}=0.33{\sim}0.77$) to cubic function-like shape (c =3.0, ${\mu}=-0.13{\sim}-0.33$) at Z > 45 dBZ. 35 dBZ ${\leq}$ Z > 45 dBZ group of Daegu distribution has characteristics similar to maritime cluster of diverse climate DSD study. However, Z > 45 dBZ group of Daegu distribution has a difference from the cluster.

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF

Generation of Sea Surface Temperature Products Considering Cloud Effects Using NOAA/AVHRR Data in the TeraScan System: Case Study for May Data (TeraScan시스템에서 NOAA/AVHRR 해수면온도 산출시 구름 영향에 따른 신뢰도 부여 기법: 5월 자료 적용)

  • Yang, Sung-Soo;Yang, Chan-Su;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.165-173
    • /
    • 2010
  • A cloud detection method is introduced to improve the reliability of NOAA/AVHRR Sea Surface Temperature (SST) data processed during the daytime and nighttime in the TeraScan System. In daytime, the channels 2 and 4 are used to detect a cloud using the three tests, which are spatial uniformity tests of brightness temperature (infrared channel 4) and channel 2 albedo, and reflectivity threshold test for visible channel 2. Meanwhile, the nighttime cloud detection tests are performed by using the channels 3 and 4, because the channel 2 data are not available in nighttime. This process include the dual channel brightness temperature difference (ch3 - ch4) and infrared channel brightness temperature threshold tests. For a comparison of daytime and nighttime SST images, two data used here are obtained at 0:28 (UTC) and 21:00 (UTC) on May 13, 2009. 6 parameters was tested to understand the factors that affect a cloud masking in and around Korean Peninsula. In daytime, the thresholds for ch2_max cover a range 3 through 8, and ch4_delta and ch2_delta are fixed on 5 and 2, respectively. In nighttime, the threshold range of ch3_minus_ch4 is from -1 to 0, and ch4_delta and min_ch4_temp have the fixed thresholds with 3.5 and 0, respectively. It is acceptable that the resulted images represent a reliability of SST according to the change of cloud masking area by each level. In the future, the accuracy of SST will be verified, and an assimilation method for SST data should be tested for a reliability improvement considering an atmospheric characteristic of research area around Korean Peninsula.