Browse > Article
http://dx.doi.org/10.5467/JKESS.2018.39.2.119

Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm  

Lim, Hyunkwang (Department of Atmospheric Sciences, Yonsei University)
Choi, Myungje (Department of Atmospheric Sciences, Yonsei University)
Kim, Mijin (Department of Atmospheric Sciences, Yonsei University)
Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University)
Go, Sujung (Department of Atmospheric Sciences, Yonsei University)
Lee, Seoyoung (Department of Atmospheric Sciences, Yonsei University)
Publication Information
Journal of the Korean earth science society / v.39, no.2, 2018 , pp. 119-130 More about this Journal
Abstract
Aerosol Optical Properties (AOPs) are retrieved using the geostationary satellite instruments such as Geostationary Ocean Color Imager (GOCI), Meteorological Imager (MI), and Advanced Himawari Imager (AHI) through Yonsei AErosol Retrieval algorithm (YAER). In this study, the retrieved aerosol optical depths (AOD)s from each instrument were intercompared and validated with the ground-based sunphotometer AErosol Robotic NETwork (AERONET) data. As a result, the four AOD products derived from different instruments showed consistent results over land and ocean. However, AODs from MI and GOCI tend to be overestimated due to cloud contamination. According to the comparison results with AERONET, the percentage within expected errors (EE) are 36.3, 48.4, 56.6, and 68.2% for MI, GOCI, AHI-minimum reflectivity method (MRM), and AHI-estimated surface reflectance from shortwave Infrared (ESR) product, respectively. Since MI AOD is retrieved from a single visible channel, and adopts only one aerosol type by season, EE is relatively lower than other products. On the other hand, the AHI ESR is more accurate than the minimum reflectance method as used by GOCI, MI, and AHI MRM method in May and June when the vegetation is relatively abundant. These results are explained by the RMSE and the EE for each AERONET site. The ESR method result show to be better than the other satellite product in terms of EE for 15 out of 22 sites used for validation, and they are better than the other product for 13 sites in terms of RMSE. In addition, the error in observation time in each product is found by using characteristics of geostationary satellites. The absolute median biases at 00 to 06 Universal Time Coordinated (UTC) are 0.05, 0.09, 0.18, 0.18, 0.14, 0.09, and 0.10. The absolute median bias by observation time has appeared in MI and the only 00 UTC appeared in GOCI.
Keywords
aerosol optical depth; AHI; GOCI; MI; geostationary satellite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hsu, N.C., M. J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang and S. C. Tsay., 2013, Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres 118(16): 9296-9315.   DOI
2 Jackson, J.M., H. Liu, I. Laszlo, S. Kondragunta, L. A.Remer, J. Huang and H.-C.Huang., 2013, Suomi-NPP VIIRS aerosol algorithms and data products. Journal of Geophysical Research: Atmospheres 118(22): 12,673-612,689.   DOI
3 Kalashnikova, O.V., M. J.Garay, J. V. Martonchik and D. J. Diner., 2013, MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle nonsphericity. Atmospheric Measurement Techniques 6(8): 2131-2154.   DOI
4 Kim, J., Yoon, J. M., Ahn, M., Sohn, B., and Lim, H., 2008, Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. International Journal of Remote Sensing, 29(21), 6181-6192.   DOI
5 Kim, M., J. Kim, M. S. Wong, J. Yoon, J. Lee, D. Wu, P. Chan, J. E. Nichol, C.-Y. Chung and M.-L. Ou., 2014, Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sensing of Environment 142: 176-187.   DOI
6 Kim, M., J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T. F.Eck, J. H. Lim, C. K. Song, S. Lee and C. Y. Chung., 2016, Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS). Atmospheric Chemistry and Physics 16(3): 1789-1808.   DOI
7 Knapp, K., R.Frouin, S. Kondragunta and A. Prados., 2005, Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. International Journal of Remote Sensing 26(18): 4097-4116.   DOI
8 Laszlo, I. and H. Liu., 2016, EPS Aerosol Optical Depth (AOD) Algorithm Theoretical Basis Document.
9 Levy, RC., S. Mattoo, L. Munchak, L. Remer, A. Sayer and N. Hsu., 2013, The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. Discuss 6: 159-259.   DOI
10 Lim, H., M. Choi, M. Kim, J. Kim and P. W. Chan., 2016, Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8. Korean Journal of Remote Sensing 32(6): 681-691.   DOI
11 Stocker, T., D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex and B. Midgley., 2013, IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
12 Tao, M., Chen, L., Wang, Z., Tao, J., Che, H., Wang, X., Wang, Y., 2015, Comparison and evaluation of the MODIS Collection 6 aerosol data in China. Journal of Geophysical Research: Atmospheres, 120, 6992-7005.   DOI
13 Wang, J., Christopher, S.A., Brechtel, F., Kim, J., Schmid, B., Redemann, J., B. Russell, P., Quinn, P., and Holben, B. N., 2003, Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. Journal of Geophysical Research: Atmospheres, 108(D23).
14 Yoon, J. M., J. Kim, J. H. Lee, H. K. Cho, B.-J. Sohn and M.-H. Ahn., 2007, Retrieval of aerosol optical depth over east Asia from a geostationary satellite, MTSAT-1R. Asia-Pacific Journal of Atmospheric Sciences 43(2): 49-58.
15 Zhang, H., S. Kondragunta, I. Laszlo, H. Liu, L. A. Remer, J. Huang, S. Superczynski and P. Ciren., 2016, An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. Journal of Geophysical Research: Atmospheres 121 (18).
16 Levy, R.C., L. A. Remer, S. Mattoo, E. F. Vermote and Y. J. Kaufman., 2007, Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres 112 (D13)
17 Bilal, M., Nichol, J.E., and Wang, L., 2017, New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sensing of Environment, 197, 115-124.   DOI
18 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, U. Jeong, W. Kim, H. Hong, B. Holben, T. F. Eck, C. H. Song, J.-H. Lim and C.-K. Song., 2016, GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmospheric Measurement Techniques 9(3): 1377-1398.   DOI
19 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, B. Holben, T. F. Eck, Z. Li and C. H. Song., 2018, GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmospheric Measurement Techniques 11(1): 385-408.   DOI
20 Daisaku, U., 2016, Aerosol Optical Depth product derived from Himawari-8 data for Asian dust monitoring. Meteorological Satellite Center Technical Note (61).
21 Garay, M. J., O. V. Kalashnikova and M. A. Bull., 2017, Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data. Atmospheric Chemistry and Physics 17(8): 5095-5106.   DOI
22 Hsu, N.C., S.-C. Tsay, M. D. King and J. R. Herman., 2006, Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geoscience and Remote Sensing, IEEE Transactions on 44(11): 3180-3195.   DOI
23 Cox, C. and Munk, 1954, Statistics of the sea surface derived from sun glitter, J. Marine Res., 13, 198-227.