• Title/Summary/Keyword: Reflecting plate

Search Result 53, Processing Time 0.03 seconds

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

The Development of Height Adjustable Steel Manhole cover (높이조절이 가능한 강재 맨홀뚜껑의 개발)

  • Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.581-586
    • /
    • 2018
  • Cast iron manhole lids cause environmental pollution during the manufacturing process, and the work environment is very poor. In addition, if the height of the manhole cover does not match the height of the road surface, it causes considerable inconvenience and safety problems. This study proposes a height - adjustable steel manhole cover that can replace cast iron manhole covers and easily match the road surface with the upper surface of the manhole cover. Structural analysis was performed to grasp the design variable of the structure of the manhole cover, satisfying the required quality performance. To fabricate a manhole cover that satisfies the required load capacity, the optimal design for the U-shaped reinforcement structure was made. The cylindrical shape of the height adjustment part and the low frame were formed by bending the steel sheet into a circular shape and then welding. Reinforcing bars were also made by bending a steel plate. The height adjustment groove was machined by a CNC milling machine. Four prototypes were fabricated and a load bearing test was carried out, and new manhole cover was made reflecting results of the test. In the load bearing test, there was no breakage of the welded part, and deformation occurred mainly at the contact area between the groove and gusset plate. Deformation of 1 to 2.7mm occurred due to a load of 450kN. On the other hand, after removing the load, there was almost no residual deformation, and the load bearing evaluation was judged to be satisfactory because the manhole cover could be disassembled and reassembled.

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Reflectivity characteristics of Ag nano-crystals grown by electroless plating (무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.218-223
    • /
    • 2013
  • In this study, the reflectivity characteristics of Ag nano-coating grown by electroless plating were investigated in order to use as the reflecting plate of BLU (Back Light Unit) in the LCD (Liquid Crystal Display) or LED (Light Emitting Diode) display equipment. The microstructure of Ag nano-coating was polycrystalline nano-structure that consisted of Ag nano-crystals to be reduced and precipitated, and the size of reduced nano-crystals increased as the thickness of nano-coating increased. The reflectivity of Ag nano-coating in the visible light decreased as the thickness of nano-coating increased and the reduction of reflectivity was more severe in the short wavelength region of visible light. The decrease of reflectivity was closely related to the size of Ag nano-crystal and was thought to be due to the larger surface roughness of larger nano-coating thickness. Therefore, the finer Ag nano-crystals and thinner nano-coating thickness could be favorable for the higher reflectivity of Ag nano-coating grown by electroless plating.

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

The Physical Region of China Divided by the Characteristics of Drainage Patterns. (하계망패턴의 특색으로 구분한 중국의 자연지역)

  • Hwang, Sang-Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.151-164
    • /
    • 1996
  • The regional division by the characteristics of the drainage patterns is important to understand its physical environment comprehensively, because the drainage network develops in reflecting characteristics of geological, geographical and climatical features in the drainage basin keenly. This study is the attempt to divide physical region in China whose drainage pattern is diverse. Chinese drainage basin is mainly divided into the interior drainage basin and the peripheral drainage basin. The interior drainage basin is divided into (1)the deranged pattern and (2)the centripetal pattern. The peripheral drainage basin is divided into (1)the dendritic pattern, (2)the parallel pattern, (3)the radial pattern and (4)the anastomatic pattern. Drainage patterns of the interior drainage basin are formed by affecting geographical features and climatic conditions mainly. In the peripheral drainage basin, drainage patterns are formed by other factors: the parallel pattern is connected with geological structure lineament by tectonic movement, the radial pattern with changes of the river channel resulted from the Yellow River's overflow, the anastomotic pattern with human's activities. The distributional features of the physical region in China are as follows: The deranged pattern appears in Zangbai Plateau, the centripetal pattern does in arid basin of the northwest China. the parallel pattern does in Hengduan mountains affected strongly by tectonic movement between Yangtze paraplatform and Indian Plate, does in the upper stream of Yangtze River and Ganges River in the south of Qinghai-Xizang Plateau, the radial pattern in Huaihe Haihe River drainage basin appearing in the alluvial fan region of Yellow River's downstream and the anastomotic pattern does in the delta of Yangtze River, in the northern coastal plain of the Jiangsu-Province and in the delta of Zhujiang River. Except these areas in the peripheral drainage basin, the dendritic pattern is usually found in the other areas.

  • PDF

Re-evaluation of Genetic Environments of Zinc-lead Deposits to Predict Hidden Skarn Orebody (스카른 잠두 광체 예측을 위한 아연-연 광상 성인의 재검토)

  • Choi, Seon-Gyu;Choi, Bu-Kap;Ahn, Yong-Hwan;Kim, Tae-Hyeong
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.301-314
    • /
    • 2009
  • The Taebaeksan mineralized province, which is the most important one in South Korea, is rich in zinc-lead-tungsten-iron-copper-molybdenum-silver-gold mineral resources and has a diversity of deposit styles. These deposits principally coexist in time and space with porphyry-related epigenetic deposit such as skarn, hydrothermal replacement, mesothermal vein, and Carlin-like deposits. The magmatic-hydrothermal systems in the Taebaek fold belt is genetically characterized by the Bulguksa subvolcanic rocks(ca. $110{\sim}50\;Ma$) related to northwestward subduction of the paleo-Pacific Plate. The most important zinc-lead deposits in the area are the Uljin, Yeonhwa II and Shinyemi skarn, the Janggun hydrothermal replacement, and the Yeonhwa I intermediate-mixed (skarn/hydrothermal replacement) ones. In the present study, we present a compilation of metal production and mineral assemblage of the zinc-lead deposits. The metal difference of deposit styles in the area indicates a cooling path from intermediate-sulfidation to low-sulfidation state in the polymetallic hydrothermal system, reflecting spatial proximity to a magmatic source.

Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge (강합성 하로 철도교의 동적거동에 대한 해석적 연구)

  • Jeong, Young-Do;Koh, Hyo-In;Kang, Yun-Suk;Eom, Gi-Ha;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • The existing middle-long span railway bridge has been mainly applied to steel box girder bridges. However, the steel box girder bridges have disadvantages in securing the space under the bridge, and the main girder is made of a thin plate box shape, resulting in a ringing noise due to the vibration. Many complaints about noise have been raised. For this reason, there is a need for the development of long railway bridges that can replace steel box girder bridges. In this paper, the characteristics of the steel composite railway bridge currently developed were introduced and a time history analysis was conducted using MIDAS Civil reflecting the speed of KTX load for 40m and 50m bridges. In addition, from the analysis results, the dynamic behavior of target bridges were verified and it was examined whether they meet the dynamic performance criteria proposed in the railway design standards. As a result, all of the bridges under review satisfied the dynamic safety criteria, however, in case of 40m of span, the vertical acceleration value was very large. In order to solve this problem, authors proposed the improvement plan and corrected the cross section to confirm that the vertical acceleration decreased.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.