• Title/Summary/Keyword: Reflected Laser Beam

Search Result 66, Processing Time 0.027 seconds

Study of Monitoring Parameters for Coherent Beam Combination through Fourier-domain Analysis of the Speckle Image (스펙클 이미지의 푸리에 공간 분석을 통한 결맞음 빔결합 상태 모니터링 변수 도출)

  • Park, Jaedeok;Choe, Yunjin;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.268-273
    • /
    • 2020
  • We analyze the characteristics of the coherent beam combination of lasers by monitoring the speckle pattern of the beam reflected from a scattering medium. Three collimated laser sources with high coherence are focused on a scattering target using a lens, and we then examine the speckle pattern of the returned beam in the Fourier domain. We observe that the size of the speckle pattern changes, depending on the focused-beam size or degree of spatial overlap of the three beams. Furthermore, through Fourier-domain analysis of the speckle pattern we obtain the monitoring variable to qualify the efficiency of the coherent beam combination.

Monte Carlo Simulation on Light Distribution in Turbid Material (혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.

Performance Analysis of Scanning Scheme Using ToF for the Localization of Optics-Based Sensor Node (광신호 기반 무선 센서 노드 위치 인식을 위한 ToF 기법의 성능 분석)

  • Jang, Woo Hyeop;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, the performance analysis of optics-based sensor node localization using ToF (Time of Flight) scheme is conducted. Generally, the position of the sensor node is calculated on the base station. And the base station scans neighboring sensor nodes with a laser. The laser which is reflected from one sensor node, however, can be reached to the base station at different angles according to the scanning resolution. This means that the error of the reached angle can increase and one node may be recognized as different nodes. Also the power of laser can decrease because the laser signal spread. Thus the sensor node which is located at a long distance from the base station cannot be detected. In order to overcome these problems which can be occurred in localization using ToF, the beam spot, the scanning resolution, the size of reflector and the power of laser at the sensor node were analyzed. It can be expected that the consequence of analysis can be provided in acquisition of accurate position of sensor node and construction of optics-based sensor node localization system.

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Measurement Method for Fine 6-DOF Displacement of Rigid Bodies (강체의 6자유도 미소 변위 측정)

  • Park, Won-Shik;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.208-219
    • /
    • 2002
  • A novel measurement method to obtain the 6-DOF motions of arbitrary rigid bodies is proposed in this paper. The method adopts a specially fabricated mirror called 3-facet mirror, which looks like a triangular pyramid haying an equilateral cross-sectional shape. The mirror is mounted on the objects to be measured, illuminated by a laser beam having circular profile, and reflects the laser beam in three different directions. Three PSDs(position sensitive detector) detect the three beams reflected by the mirror, respectively. From the signals of the PSDs, we can calculate the 3-dimensional position and orientation of the 3-facet mirror, and thus enabling us to determine the 3-dimensional position and orientation of the objects. In this paper, we model the relationship between the 3-dimensional position and orientation of an object in motion and the outputs of three PSDs. A series of experiments are performed to demonstrate the effectiveness and accuracy of the proposed method. The experimental results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects and provide resonable measurement accuracy.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

Optically induced rotation of combined Mie particles within an evanescent field of a gaussian beam (가우스형 에바네슨트파의 광압에 의한 Mie 입자 결합체들의 회전)

  • 송영곤
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.5-9
    • /
    • 1999
  • We demonstrate a windmill type rotation of combined Mie particles caused by the evanescent field generated at the surface of a Gadolinium Gallium Garnet prism where a linearly polarized Nd:YAG laser beam (of wavelength 532 nm and power 100 mW) is totally reflected. The combined particles (e.g., doublets, triplets or quadruplets) consisting of polystyrene latex (or yeast) spheres with diameters of 3~5 m are reported to rotate at 0.1~1 rpm in water when the particles are slightly displaced from the center of the evanescent field.

  • PDF

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

Measurement of Wavefront Aberrations in Off-Axis Parabolic Mirrors and its Dependence on the Misalignment (레이저 빔의 파면 측정을 통한 비축 포물 거울의 성능 평가 및 정렬 오차 민감도에 관한 연구)

  • Jeong, Tae-Moon;Choi, Il-Woo;Ko, Do-Kyeong;Lee, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.256-261
    • /
    • 2006
  • Wavefront aberrations of a laser beam that was reflected from an off-axis parabolic (OAP) mirror were measured to evaluate the optical performance of the OAP mirror. For a diamond turned OAP mirror, the root-mean-square (rms) value of higher-order aberrations was only $0.03{\mu}m$ for the laser beam size of about 34 mm. The other OAP mirror which was polished at a domestic company had the rms value of higher-order aberrations of $2.07{\mu}m$ for the same beam size. Although the diamond turned OAP mirror was well fabricated to have a small amount of aberrations, the aberrations were induced by the misalignment of the OAP mirror. Especially, 0 degree astigmatism increased with the sensitivity of $0.372{\mu}m/mrad$ when the OAP mirror was tilted in the tangential plane, which agreed well with the calculated results using a commercial ray tracing software.