본 연구에서는 Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS) 등의 광역관측 위성영상을 이용한 해수나 연안수의 클로로필 농도 분석을 통해 가능성이 확인되었던 밴드 비를 이용한 비교적 간단한 추정 모델을 수체의 크기와 폭이 현저히 작고 탁도가 있는 하천에 대해 클로로필-a 농도값을 추정하고자 고해상도 위성영상에 Two-band 및 Three-band reflectance 모델을 적용하여 가능성을 파악하였다. 특히 RapidEye 영상을 이용하여 일반적으로 탁도가 있는 수체에 대해 Red와 NIR 영역을 활용하는 이들 모델에 Red-edge(RE) 밴드를 적용하였다. Red와 NIR을 이용한 Two-band Reflectance 모델은 계산식의 결정계수 $R^2$ 값이 0.38로 유의성 없는 결과를 나타내었다. 그러나 RapidEye의 Red-edge (RE) 파장 대를 이용한 Red-RE Two-band 모델과 Red-RE-NIR Three-band 모델을 이용한 계산식에 대해서는, 2차함수에 의한 Three-band 모델의 결과는 Red-RE Two-band 모델의 결과와 통계적인 값이 거의 유사하였고 Two-band와 3차함수에 의한 Three-band 모델 추정식은 각각 0.66, 0.73 의 $R^2$값을 나타내어 Red-edge 밴드의 적용 가능성을 보였고, 실측치와의 Root Mean Square Error (RMSE)는 24.8, 22.4 mg $m^{-3}$, Relative Percent Difference(RPD)는 각각 1.30, 1.29로 1.5 이하의 대략적인 추정(Approximate Prediction) 수준을 나타내었다. 고해상도 위성영상에 Red-RE-NIR Three-band 모델을 적용한 계산식을 이용해 대략적인 추정이지만 가장 유의한 수준의 클로로필-a 농도를 추정할 수 있었다. 영상에서 추정된 클로로필-a 분포를 비교하였을 때 3차함수에 의한 Three-band 모델 추정식이 Two-band 모델에 비해 낮은 값의 분포를 보였다. 향후 하천의 스펙트럼을 실측하여 파장별 부유물질, 유기물과의 상관성 및 클로로필 농도와의 간섭 정도를 시뮬레이션하여 보정식을 산출 적용한다면 탁도가 다소 높은 하천에서의 클로로필-a 농도 계산식의 정확도를 더욱 높일 수 있을 것으로 기대된다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.598-601
/
2006
Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.
Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.
Landsat TM 인공위성 자료(1997년 6월 16일 촬영)를 이용하여 평택시에 대한 지표피복분류도를 만들고 정확도를 평가하였고, 또한 우리 나라의 농업실정에 맞는 지표피복 분류체계를 세우기 위해 Anderson의 지표피복분류안을 응용하여 새로운 분류안을 만들었다. 분류방식으로는 감독분류를 사용하였는데 결과에 직접적인 영향을 주는 훈련장소(training site)의 선정을 위해 지형도, 항공사진 등과 현지 실사자료인 DGPS 자료를 사용하여 논, 밭 등 13개의 훈련조(training sets)를 작성 후 최대우도법(最大尤度法)(maximum likelihood classifier)을 적용하여 주제도를 만들었다. 이의 정확도 평가를 위해 DGPS, 항공사진, 지형도 등을 이용한 분류정확도 평가에서 전체 정확도는 86.8%이며, 카파계수가 85.4%로 매우 양호한(Excellent) 것으로 판명되었다. 그러나 도시/촌락, 비닐하우스 등의 사용자 정확도는 60% 정도로서 낮은 편이며, 도로, 비닐하우스 등의 생산자 정확도는 70% 정도로 낮은 편인데, 이는 인공건조물이라는 특징에 따른 분광학적 반사특성과 이질성(異質性)과 분포면적이 적은데 기인된 것으로 생각된다. 한편 원격탐사자료를 이용하여 토지피복 분류도를 작성할 때 우리나라 농업실정에 알맞은 농업적(農業的) 지표피복분류안(地表被覆分類案)을 만들었는데, 수준 I에는 농경지, 산림지, 물, 불모지, 도시나 인공건조물 등으로 나눌 수 있다.
토지피복도는 국토정책, 환경정책을 위한 의사결정 근거 자료로 활용되는 매우 중요한 자료이다. 토지피복도는 원격탐사 자료를 활용하여 제작되는데, 이때 사용되는 데이터의 취득 시기에 따라 동일한 지역을 대상으로 하더라도 분류 결과가 달라질 수 있다. 본 연구에서는 단시기 데이터의 분류 정확도를 개선하기 위해 다중시기 위성영상을 활용하였으며 계절에 따른 지표면의 분광 반사 특성 차이를 딥러닝 알고리즘의 하나인 U-Net 모델에 학습시켜 분류하였다. 또한 단시기 분류 결과와 정확도 비교를 통해 분류 정확도의 향상 정도를 비교하였다. 구역 내에 30%의 녹지와 한강을 포함하여 다양한 토지피복으로 이루어진 서울특별시를 연구대상지로 설정하고 2020년 분기별 Sentinel-2 위성영상을 산출하였다. 대한민국 환경부에서 작성한 세분류 토지피복도를 활용하여 U-Net 모델을 학습시켰다. 학습한 U-Net 모델을 통해 단시기, 2시기, 3시기, 4시기로 모델을 학습하여 분류한 결과, 단시기를 제외하고 토지피복도 분류 정확도 확보기준인 75%를 상회하는 81%, 82% 79%의 정확도를 나타냈다. 이를 통해 다중 시계열 학습을 통해 토지피복의 분류 정확도 향상이 가능하다는 것을 확인하였다.
탁도는 부유물질에 의한 빛의 산란 또는 흡수로 인한 수체의 흐림을 나타내는 수치로 수질 관리 분야에서 중요 지표로 활용되고 있다. 탁도는 소규모의 하천에서 변동성이 심할 수 있으며, 이는 국가하천의 수질에 직접적으로 영향을 준다. 따라서 고해상도의 탁도 공간정보 산출은 매우 중요하다. 이 연구에서는 Korea Multi-Purpose Satellite-3 및 -3A (KOMPSAT-3/3A) 영상으로부터 한강 수계 하천의 고해상도 탁도 매핑을 위한 eXtreme Gradient Boosting (XGBoost) 알고리즘 기반의 탁도 산출 모델을 개발하였다. 이를 위해 총 24장의 KOMPSAT-3/3A 영상과 150장의 Landsat-8 영상으로부터 계산된 대기 상단(Top Of Atmosphere, TOA) 반사율을 활용하였으며, Landsat-8 TOA 반사율은 KOMPSAT-3/3A의 관측 파장 대역에 적합하도록 교차검보정을 수행하였다. 국가수질자동관측망에서 측정된 탁도를 탁도 산출 모델의 참조자료로 사용하였고, 입력 변수로는 탁도가 실측된 위치에서의 TOA 분광반사율과 탁도 분석에 널리 이용되어 온 분광지수인 정규식생지수, 정규수분지수, 정규탁도지수, 그리고 Moderate Resolution Imaging Spectroradiometer (MODIS)의 대기 산출물(에어로졸 광학 두께, 수증기량, 오존)을 사용하였다. 또한 고탁도와 저탁도에 대한 KOMPSAT-3/3A TOA 분광반사율을 분석하여 탁도를 설명할 수 있는 새로운 정규탁도지수(new normalized difference turbidity index, nNDTI)를 제안하였고, 이를 탁도 산출 모델에 입력 변수로 추가하였다. XGBoost 기반 탁도 산출 모델은 현장관측 탁도와 비교하여 2.70 NTU의 평균 제곱근 오차(root mean square error, RMSE) 및 14.70%의 정규화된 RMSE(normalized RMSE)를 가지는 탁도를 예측하여 우수한 성능을 보였으며, 이 연구에서 새롭게 제안한 nNDTI가 탁도 산출에 있어 가장 중요한 변수로 사용되었다. 개발된 탁도 산출 모델을 KOMPSAT-3/3A 영상에 적용하여 하천 탁도를 고해상도로 매핑하였으며, 탁도의 시공간적 변동에 대한 분석이 가능하였다. 이 연구를 통하여 고해상도의 정확한 탁도 공간정보 산출에 KOMPSAT-3/3A 영상이 매우 유용함을 확인할 수 있었다.
본 연구에서는 MODerate resolution Imaging Spectroradiometer (MODIS) 자료를 활용하여 20년(2002-2021)의 중분류 토지피복별 알베도 변화를 분석하고, Visible Infrared Imaging Radiometer Suite (VIIRS)의 10년(2012-2021) 자료를 활용해 MODIS 자료와의 차이를 분석하였다. MODIS와 VIIRS의 알베도 자료는 Bidirectional Reflectance Distribution Function (BRDF) 모델을 활용해 생산된 Sinusoidal Tile Grid 기반 500 m 공간해상도의 일단위 알베도 자료 MCD43A3와 VNP43IA3를 우리나라 범위에 대하여 구축하였다. Python 3.9 기반으로 작성된 코드를 활용하여 Reprojection을 하였으며, Resampling method는 Nearest neighbor를 적용하였다. 알베도 분석에는 단파 영역(Shortwave)의 White sky albedo와 Black sky albedo를 활용하였다. MODIS 자료를 활용한 20년의 알베도 분석 결과, 모든 토지이용에서 알베도가 상승하는 경향이 나타났다. 2000년대(2002-2011)에 비해 2010년대(2012-2021)의 평균 알베도가 산림 지역에서 0.0027의 가장 큰 상승값을 보였고, 그 다음으로 초지가 0.0024의 상승값을 보였다. VIIRS와 MODIS의 알베도를 비교한 결과, VIIRS의 알베도가 0.001에서 0.1 만큼 더 큰 것으로 나타났으며, 이는 영상의 촬영시기에 따른 지표면 반사도와 센서의 특성 차이에 의한 것으로 판단된다.
Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.
The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.