• Title/Summary/Keyword: Reflectance Characteristics

Search Result 386, Processing Time 0.023 seconds

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Analysis of Spectral Reflectance Characteristic Change during Growing Status of Rice Plants using Spectroradiometer (스펙트로레디오메터를 이용한 벼 생장시기의 분광반사 특성 변화 분석)

  • Jang, Se-Jin;Suh, Ae-Sook;Kim, Pan-Gi;Yun, Jin-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.12-19
    • /
    • 2000
  • Knowledge for reflectance characteristic of interesting targets will provide us with actual application of remote sensing on agriculture. In this study, we have measured and analyzed reflectivity characteristics based on growing status from transplanting time to harvesting time. Rice paddies transplant into 3 fields at 20, May, 1999. Measurement of reflectivity characteristics were carried out with a portable spectroradiometer for frequencies from 300nm to 1100nm during the time period from 11:00 AM to 01:00 PM of clear sky and calm a day. The measurements for a day repeated 3 times(also, 3 times to each measurement)for reliable values. In result, we found that averaged reflectivity of visible range has about 2.34% - 2.55% in blue region(400nm-498nm), about 5.05% - 6.01% in green region(500nm-598nm) and about 4.21% - 5.24% in red region(600nm-698nm). It must be noted that the more rice canopy grows, the more spectral reflectivity decreases in visible region. Also, we separated infrared region into two cases - One case is increasing region with 700nm-780nm, the other is fixed region with 800nm-1100nm. Averaged reflectivity of these regions has about 22.3% - 23.0% in increasing region, about 29.4% - 33.1% in fixed region. It must be noted that more rice canopy grows, the more spectral reflectivity also increases up to 23, Aug. in infrared region. After 23, Aug, the reflectivity has a tendency toward decrease.

  • PDF

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Illuminant Color Estimation Method Using Valuable Pixels (중요 화소들을 이용한 광원의 색 추정 방법)

  • Kim, Young-Woo;Lee, Moon-Hyun;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-30
    • /
    • 2013
  • It is a challenging problem to most of the image processing when the light source is unknown. The color of the light source must be estimated in order to compensate color changes. To estimate the color of the light source, additional assumption is need, so that we assumed color distribution according to the light source. If the pixels, which do not satisfy the assumption, are used, the estimation fails to provide an accurate result. The most popular color distribution assumption is Grey-World Assumption (GWA); it is the assumption that the color in each scene, the surface reflectance averages to gray or achromatic color over the entire images. In this paper, we analyze the characteristics of the camera response function, and the effect of the Grey-World Assumption on the pixel value and chromaticity, based on the inherent characteristics of the light source. Besides, we propose a novel method that detects important pixels for the color estimation of the light source. In our method, we firstly proposed a method that gives weights to pixels satisfying the assumption. Then, we proposed a pixel detection method, which we modified max-RGB method, to apply on the weighted pixels. Maximum weighted pixels in the column direction and row direction in one channel are detected. The performance of our method is verified through demonstrations in several real scenes. Proposed method better accurately estimate the color of the light than previous methods.

Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite Using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature (디클로로아세트산/톨루엔 공용매와 추출 온도를 이용한 무수말레산-그래프트 EPDM/산화 아연 복합체의 가교 특성 분석)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • Crosslink characteristics of maleic anhydride-grafted EPDM (MAH-g-EPDM)/zinc oxide composite were investigated by weight losses after dichloroacetic acid (DCA)/toluene cosolvent extraction at different temperatures and by measurement of crosslink densities. The chemical changes were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The weight losses by extraction at high temperature ($90^{\circ}C$) were remarkably greater than those at room temperature and those by DCA/toluene cosolvent extraction were greater than those by toluene one by more than 5 times. The crosslink densities were measured after the solvent extraction, and the second crosslink densities were higher than the first ones. The first crosslink density was lower when the extraction temperature was high, and it was much lower for the toluene extraction than for the DCA/toluene cosolvent extraction. The second crosslink density of the sample extracted with DCA/toluene cosolvent was greater than that extracted with toluene. The extracted components were depending on the extraction solvents and temperatures, for example; only strong crosslinked networks were remained when extracting with DCA/toluene cosolvent at high temperature, while only uncrosslinked polymer chains were extracted when extracting with toluene at room temperature. Therefore, crosslink characteristics of the MAH-g-EPDM/zinc oxide composite can be analyzed by comparison of the extracted components according to the extraction solvents and temperatures and by measurement of successive crosslink densities.

A Study on Infrared Emissivity Measurement of Material Surface by Reflection Method (반사법에 의한 재료표면의 적외선 방사율 측정에 관한 연구)

  • Kang, Byung-Chul;Kim, Sang-Myoung;Choi, Joung-Yoon;Kim, Gun-Ok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • Infrared emissivity is one of the most important factors for the temperature measurement by infrared thermography. Although the infrared emissivity of an object can be measured from the ratio of blackbody and the object, at room temperature it is practically difficult to measure the value due to the background effects. Hence, quantitative reflectance of bare steel plate and the surface of coating was measured by FT-IR spectroscopy and emissivity was calculated from this. The emissivity of polished bare steel surface was from 0.06 to 0.10 and the value for the unpolished bare steel can not be achieved because optical characteristics changes of surface roughness induces erroneous results. Emissivity of transparent paint coated steel was from 0.50 to 0.84. Depends on the IR absorption regions, which is a characteristic value of the coating, emissivity changes. This study suggests surface condition of material, thickness, roughness et cetra are important factor for IR optical characteristics. Emissivity measurement by reflection method is useful technique to be applied for metal and it with coating applied on the surface. The range of experimental errors of temperature can be narrowed by the application of infrared thermography from the measured thermal emissivity.

A Quantitative Study for Hydrothermal Alteration Zones using Short Wavelength Infrared Spectrometry (단파장적외선 분광분석법을 이용한 열수변질대 정량화 연구)

  • Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Advanced argillic, argillic, and phyllic zones are the most important alteration patterns to predict the hidden ore body during exploration of hydrothermal deposits. We examined the quantitative relationship between the spectral absorption characteristics and the mineral content of the synthetic mixtures such as alunite-kaolinite and illite-kaolinite using short wavelength infrared (SWIR) spectroscopy. In the alunite-kaolinite mixtures, the spectral absorption characteristics of the alunite was highly correlated with the Hull quotient reflectance(0.99) and the kaolinite had the highest correlation with the Gaussian peak(0.92). Illite-kaolinite mixtures are essential for Gaussian deconvolution because of the overlap of absorption region. Illite and kaolinite mixtures indicate the high correlation of 0.93 and 0.98, respectively. The error ranges in the alunite-kaolinite(8%) and illite-kaolinite mixtures(5%) derived from SWIR were smaller than the ones(29% and 26%) obtained from X-ray diffraction(Rietveld) analysis. These results show that SWIR spectroscopic analysis is more reliable than XRD Rietveld analysis in terms of quantification of allowed minerals.

Output Characteristics of a Pulsed Ti:sapphire Laser Oscillator Pumped Longitudinally by Second Harmonic Wave of Nd:YAG Laser and a Ti:sapphire Laser Amplifier Operated along the Single Path of the Oscillator Beam (Nd:YAG 레이저의 제 2조화파로 종여기하는 펄스형 Ti:sapphire 레이저 발진기와 이를 이용한 단일경로 형태의 Ti:sapphire 증폭기의 출력특성)

  • Kim, Kyung-Nam;Jo, Jae-Heung;Lim, Gwon;Cha, Byung-Heon
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.66-73
    • /
    • 2007
  • The various output characteristics of a pulsed Ti:sapphire laser oscillator with a plane-parallel resonator, pumped longitudinally by the second harmonic wave of a Nd:YAG laser, and the output of a Ti:sapphire laser amplifier operated along the single path of the oscillator beam were investigated and analyzed. In the case of the oscillator, we measured the spectrum, the pulse buildup time, the temporal duration time of the pulse, and the output energy according to the variation of the pumping energy, resonator length, and the reflectance of the output coupler. And, in the case of the amplifier, we investigated and analyzed the output energy of the amplifier as a function of the time difference between the two pump beams of the oscillator and the amplifier, the pumping energy of the oscillator, and the pumping energy of the amplifier When pump energies of both the oscillator and the amplifier were 18 mJ/pulse, we could find that the output energy of the amplifier increased linearly and gradually up to the time difference of 35 ns. Finally, we determined that the slope efficiencies of the oscillator and the amplifier were 23.5 % and 11.6 %, respectively.

The Effects of Levelers on Electroplating of Thin Copper Foil for FCCL (전기도금법을 이용한 FCCL용 구리박막 제조시 레벨러의 영향 연구)

  • Kang, In-Seok;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2012
  • In recent days, the wire width of IC is narrowed and the degree of integration of IC is increased to obtain the higher capacity of the devices in electronic industry. And then the surface quality of FCCL(Flexible Copper Clad Laminate) became increasingly important. Surface defects on FCCL are bump, scratch, dent and so on. In particular, bumps cause low reliability of the products. Even though there are bumps on the surface, if leveling characteristic of plating solution is good, it does not develop significant bump. In this study, the leveling characteristics of additives are investigated. The objective of study is to improve the leveling characteristic and reduce the surface step through additives and plating conditions. The additives in the electrodeposition bath are critical to obtain flat surface and free of defects. In order to form flat copper surface, accelerator, suppressor and leveler are added to the stock solution. The reason for the addition of leveler is planarization surface and inhibition of the formation of micro-bump. Levelers (SO(Safranin O), MV(Methylene Violet), AB(Alcian Blue), JGB(Janus Green B), DB(Diazine Black) and PVP(Polyvinyl Pyrrolidone) are used in copper plating solution to enhance the morphology of electroplated copper. In this study, the nucleation and growth behavior of copper with variation of additives are studied. The leveling characteristics are analyzed on artificially fabricated Ni bumps.