• Title/Summary/Keyword: Refined mesh method

Search Result 44, Processing Time 0.026 seconds

Application of Equivalent Beam Element for Practical Vibration Analysis of Stadium Structure (스타디움 구조물의 실용적인 진동해석을 위한 등가보요소의 적용)

  • Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.91-99
    • /
    • 2004
  • In general, stadium structure with long span has low inherent natural frequency. In the stadium structure, structural behavior similar to resonance can be occurred easily by spectator rhythmical movements of which exciting period is small comparatively. It is required to investigate the safety and the serviceability of stadium structure. Therefore, there exists a necessity for accurate vibration analysis. Accurate analysis of stadium structure subjected to dynamic load is required for economical construction and safe design of stadium structure. Stadium structure should be modeled by refined mesh for accurate vibration analysis. As the mesh of stadium structure is refined, the number of divided elements increases in numerical analysis. The number of node is increased and numerous computer memories or computational time are required. So it is very difficult to analyze refine model of stadium structures by using the commercial programs. It is possible to efficient vibration analysis of stadium structure by finite element modeling method using equivalent beam element proposed in this paper, because the number of nodes is decreased remarkably.

A reverse engineering system for reproducing a 3D human bust (인체 흉상 복제를 위한 역공학 시스템)

  • 최회련;전용태;장민호;노형민;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.15-19
    • /
    • 2001
  • A dedicated reverse engineering(RE) system for rapid manufacturing of human head in a 3D bust has been developed. The first step in the process is to capture the surface details of a human head and shoulder by three scanners based upon the digital moire fringe technique. Then the multiple scans captured from different angles are aligned and merged into a single polygonal mesh, and the aligned data set is refined by smoothing, subdividing or hole filling process. Finally, the refined data set is sent to a 4-axis computer numerically control(NC) machine to manufacture a replica. In this paper, we mainly describe on the algorithms and software for aligning multiple data sets. The method is based on the recently popular Iterative Closest Point(ICP) algorithm that aligns different polygonal meshes into one common coordinate system. The ICP algorithm finds the nearest positions on one scan to a collection of points on the other scan by minimizing the collective distance between different scans. We also integrate some heuristics into the ICP to enhance the aligning process. A typical example is presented to validate the system and further research work is also discussed.

  • PDF

Efficient Vibration Analysis of Stadium Structure (경기장 구조물의 효율적인 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.475-482
    • /
    • 2001
  • Stadium stand could be led to significant dynamic response due to rhythmical activities of spectator. The dynamic loads induced by spectators movements are considered as static loads in design standard of many countries but these loads have dynamic characteristics. So, it is desirable to apply measured dynamic loads created by spectator activities and to analyze the dynamic behavior of stadium system. The precise investigation of the dynamic loads on stadium structures and the accurate analysis of dynamic behavior of stadium systems are demanded for effective design. As the floor mesh of stadium stand is refined, the number of nodes increase in numerical analysis. So it is difficult to analyze entire stadium structures and much more computer memory are necessary for vibration analysis of stadium system. In this study, the various dynamic loads induced by spectator movements are measured and analyzed. And new modeling method that reduce the nodal points of stadium systems are introduced. Vibration analysis of stadium system is executed to inspect the accuracy and the efficiency of proposed method in this paper.

  • PDF

Fast Algorithm for the Capacitance Extraction of Large Three Dimensional Object (대용량 3차원 구조의 정전용량 계산을 위한 Fast Algorithm)

  • Kim, Han;Ahn, Chang-Hoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • This paper describes to extend the fast algorithm fur the capacitance extraction of large three-dimensional object. The triangular meshes are used and refined adaptively in the area where the heavy charges reside in each iterative solving. This technique is applied to the capacitance extraction of a 68-pin cerquad package. The results show fast convergence, and this adaptive technique coupled with the fast algorithm is efficient to reduce the number of elements and computing time with least additional computational efforts in large three dimensional problems.

p-Adaptive Mesh Refinement of Plate Bending Problem by Modified SPR Technique (수정 SPR 기법에 의한 휨을 받는 평판문제의 적응적 p-체눈 세분화)

  • Jo, Jun-Hyung;Lee, Hee-Jung;Woo, Kwang-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.481-486
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

Inscribed Approximation based Adaptive Tessellation of Catmull-Clark Subdivision Surfaces

  • Lai, Shuhua;Cheng, Fuhua(Frank)
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.139-148
    • /
    • 2006
  • Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this paper, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaces. Different from previous control mesh refinement based approaches, which generate approximate meshes that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit surface to generate an inscribed polyhedron of the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming available, the new adaptive tessellation method can precisely measure error for every point of the limit surface. Hence, it has complete control of the accuracy of the tessellation result. Cracks are avoided by using a recursive color marking process to ensure that adjacent patches or subpatches use the same limit surface points in the construction of the shared boundary. The new method performs limit surface evaluation only at points that are needed for the final rendering process. Therefore it is very fast and memory efficient. The new method is presented for the general Catmull-Clark subdivision scheme. But it can be used for any subdivision scheme that has an explicit evaluation method for its limit surface.

Efficient Vibration Analysis of Floors in A Shear Wall Building Structure (벽식구조물 바닥의 효율적인 진동해석)

  • 김현수;이동근;이선화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.357-364
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system composed of only reinforced connote walls and slabs, have been constructed In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time.

  • PDF

Development of Strength Evaluation System Using the Combined Grillage and Shell Element for the Strength around the Opening (골조구조 해석과 판 요소 해석의 결합을 활용한 개구부 강도평가 시스템 개발)

  • Kim, Sung-Chan;Lee, Kyung-Seok;Song, Jae-Young;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.605-611
    • /
    • 2007
  • A ship is composed of many grillage structures especially the deck which is consists of primary girders, transverse and longitudinal members. Several holes are arranged on these primary members for pipes, vents, etc. which cause stress concentration due to the discontinuity of the member. It is not easy to get the stress values around all these holes because of the huge amount of time necessary for computations. In this paper, a simple method to compute for the stress around the holes is suggested. This method is composed of two steps which are grillage analysis for primary members and detailed stress analysis using the results of the grillage analysis. This method is made for the design of the primary members with openings supporting the deck structure.

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.