• 제목/요약/키워드: Refined mesh method

검색결과 44건 처리시간 0.034초

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

Delaunay's 삼각화를 이용한 3차원 자동요소분할 (Automatic Three Dimensional Mesh Generation using Delaunay's Triangulation)

  • 김형석;정현교;이기식;한송엽
    • 대한전기학회논문지
    • /
    • 제37권12호
    • /
    • pp.847-853
    • /
    • 1988
  • A method of three-demensional finite element mesh generation is presented in this paper. This method is based on the Delaunay's triangulation whose dual is Voronoi's diagram. A set of points is given on the boundary surface of the concerning domain and the initial tetrahedra are generated by the given set of points. Then, the quality of every tetrahedron is investigated and the interior points are generated near the tetrahedra which are inferior in quality and the tetrahedra of good quality can be controlled by the density of the initial boundary points. Regions with different material constant can be refined in tetrahedra respectively. To confirm the effectiveness of this algorithm,the total volume of tetrahedra was compared to the true volume and this mesh generator was applied to a three-dimensional electostatic problem.

  • PDF

Application of adaptive mesh refinement technique on digital surface model-based urban flood simulation

  • Dasallas, Lea;An, Hyunuk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.122-122
    • /
    • 2020
  • Urban flood simulation plays a vital role in national flood early warning, prevention and mitigation. In recent studies on 2-dimensional flood modeling, the integrated run-off inundation model is gaining grounds due to its ability to perform in greater computational efficiency. The adaptive quadtree shallow water numerical technique used in this model implements the adaptive mesh refinement (AMR) in this simulation, a procedure in which the grid resolution is refined automatically following the flood flow. The method discounts the necessity to create a whole domain mesh over a complex catchment area, which is one of the most time-consuming steps in flood simulation. This research applies the dynamic grid refinement method in simulating the recent extreme flood events in Metro Manila, Philippines. The rainfall events utilized were during Typhoon Ketsana 2009, and Southwest monsoon surges in 2012 and 2013. In order to much more visualize the urban flooding that incorporates the flow within buildings and high-elevation areas, Digital Surface Model (DSM) resolution of 5m was used in representing the ground elevation. Results were calibrated through the flood point validation data and compared to the present flood hazard maps used for policy making by the national government agency. The accuracy and efficiency of the method provides a strong front in making it commendable to use for early warning and flood inundation analysis for future similar flood events.

  • PDF

형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사 (Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques)

  • 정준호;양동렬
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

Parallel Generation of NC Tool Paths for Subdivision Surfaces

  • Dai Junfu;Wang Huawei;Qin Kaihuai
    • International Journal of CAD/CAM
    • /
    • 제4권1호
    • /
    • pp.47-53
    • /
    • 2004
  • The subdivision surface is the limit of recursively refined polyhedral mesh. It is quite intuitive that the multi-resolution feature can be utilized to simplify generation of NC (Numerical Control) tool paths for rough machining. In this paper, a new method of parallel NC tool path generation for subdivision surfaces is presented. The basic idea of the method includes two steps: first, extending G-Buffer to a strip buffer (called S-Buffer) by dividing the working area into strips to generate NC tool paths for objects of large size; second, generating NC tool paths by parallel implementation of S-Buffer based on MPI (Message Passing Interface). Moreover, the recursion depth of the surface can be estimated for a user-specified error tolerance, so we substitute the polyhedral mesh for the limit surface during rough machining. Furthermore, we exploit the locality of S-Buffer and develop a dynamic division and load-balanced strategy to effectively parallelize S-Buffer.

강성저감을 고려한 플랫슬래브 구조물의 지진해석 (Seismic Analysis of Flat Slab Structures considering Stiffness Degradation)

  • 김현수;이승재;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Eun-Jin
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.105-122
    • /
    • 2001
  • A new three-dimensional 13-node hexahedral element with rotational degrees of freedom, which is designated as MR-H13 element, is presented. The proposed element is established by adding five nodes to one of the six faces of basic 8-node hexahedral element. The new element can be effectively used in the connection between the refined mesh and the coarser mesh. The derivation of the current element in this paper is based on the variational principles in which the rotation and skew-symmetric stress are introduced as independent variables. Numerical examples show that the performance of the new element is satisfactory.

CAD 와의 연동을 고려한 T-스플라인 유한요소해석 (T-spline Finite Element Method Integrated with CAD)

  • 엄태경;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.672-677
    • /
    • 2007
  • Recently, the new finite element method which uses NURBS as shape functions was proposed. It is very promising because it can directly use CAD data to describe geometry and discretize problem domain. In this case, CAE models are not approximated but represent exact geometry. So, it can contribute to more accurate results. In addition, it can greatly reduce CAE costs in that simulation models don't have to be made up independently. But in spite of these advantages, the method using NURBS have also some disadvantages. NURBS surface cannot be refined locally. T-splines are recently developed surface modeling technique. A T-spline surface is a NURBS surface with T-junctions and is defined by a control grid called T-mesh. The T-junctions enable T-spline surfaces to be refined locally. That is, it is possible to add a single control point to a T-spline control grid without propagating an entire row or column of control points and without altering the surface. In this research, the finite element analysis using T-splines is studied. In this analysis, CAD data are used directly for engineering analysis. Some problems with complex geometry are solved. And the results will be compared with ones of conventional FEM.

  • PDF

선택적 p-분배에 의한 적응적 유한 요소법 (Adaptive Finite Element Method by Selective p-Distribution)

  • 조준형;우광성;박진환;안재석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.288-295
    • /
    • 2003
  • An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the recovery technique. In case of the recovery technique, the SPR(superconvergent patch recovery) approach has been modified for p-adaptive mesh refinement. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly. To verify the proposed algorithm, the limit value approach is proposed which utilizes the exact strain energy computed from the extrapolation equation. A new pre-processor is developed for the p-version finite element program in which the vector graphic editor is used for the automatic generation of node connection and coordinate by halfedge solid data structure according to uniform or nonuniform p-distribution. The general 2-D algorithm is also developed to generate face modes and internal modes in accordance with different mesh types. The quality of the error estimator is investigated with the help of two mumerical examples. The results show that the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

2방향 중공슬래브의 효율적인 해석 (Efficient Analysis of Biaxial Hollow Slab)

  • 박현재;김현수;박용구;황현식;이기장;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.362-367
    • /
    • 2008
  • Recently, the use of biaxial hollow slab is increased to reduce noise and vibration of the floor slab. Therefore, an efficient method for the vibration analysis of biaxial hollow slab is required to describe dynamic behavior of biaxial hollow slab. A finite element analysis is one of the method to analyze the biaxial hollow slab. It is necessary to use a refined finite element model for an accurate analysis of a floor slab with an effects of the hollow shape. But it would take a significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Thus the proposed method uses equivalent plate model in this study. Dynamic analyses of an example structure subjected to walking loads were performed to verify the efficiency and accuracy of the proposed method.

  • PDF