• Title/Summary/Keyword: Reference objects

Search Result 312, Processing Time 0.026 seconds

Performance Evaluation of ARCore Anchors According to Camera Tracking

  • Shinhyup Lee;Leehwan Hwang;Seunghyun Lee;Taewook Kim;Soonchul Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.215-222
    • /
    • 2023
  • Augmented reality (AR), which integrates virtual media into reality, is increasingly utilized across various industrial sectors, thanks to advancements in 3D graphics and mobile device technologies. The IT industry is thus carrying out active R&D activities about AR platforms. Google plays a significant role in the AR landscape, with a focus on ARCore services. An essential aspect of ARCore is the use of anchors, which serve as reference points that help maintain the position and orientation of virtual objects within the physical environment. However, if the accuracy of anchor positioning is suboptimal when running AR content, it can significantly diminish the user's immersive experience. We are to assess the performance of these anchors in this study. To conduct the performance evaluation, virtual 3D objects, matching the shape and size of real-world objects, we strategically positioned ourselves to overlap with their physical counterparts. Images of both real and virtual objects were captured from five distinct camera trajectories, and ARCore's performance was analyzed by examining the difference between these captured images.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.

Construction of Preservation Description Framework for Digital Archiving (디지털 아카이빙을 위한 보존 기술항목 프레임워크 구축)

  • Lee, Seungmin
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.4
    • /
    • pp.129-151
    • /
    • 2017
  • Information modeling that is broadly applied in digital archiving process privides conceptual process that can be used to guide the creation of descriptions for the objects of preservation. However, it has faced with the limitations on substantially applying to the creation of preservation metadata records. This research proposes the concept of Resource Cluster in order to address these problems and efficiently describe the objects of preservation during digital archiving process. It also constructed Preservation Description Framework (PDF) based on RDF in order to substantially manifest preservation descriptions. This framework combines the structure of OAIS Reference Model and Functional Requirements for Bibliographic Records (FRBR) and can be an alternative approach to the creation of preservation metadata in more efficient and effective ways.

Three-dimensional relative-distance measurement by use of the phase-shifting digital holography (위상천이 디지털 홀로그래피를 이용한 3차원 상대 거리 측정)

  • Kim, Hyun;Lee, Yeon-H.
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper we present a new method of measuring the relative distance of two point objects in three-dimensional space by using phase-shifting digital holography. In our system the reference beam of a spherical wave is used instead of a plane wave. The system is computer simulated and built on an optical table for experiments. It is shown from computer simulations and experiments that the relative distance can be measured without the exact information on the reference beam used in the hologram record. It is shown from experiments that the relative distance between two point objects separated by 0.5 cm in the distance of about 300 cm from the CCD can be measured with an error less than 10%.

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

A Study on Automated Input of Attribute for Referenced Objects in Spatial Relationships of HD Map (정밀도로지도 공간관계 참조객체의 속성 입력 자동화에 관한 연구)

  • Dong-Gi SUNG;Seung-Hyun MIN;Yun-Soo CHOI;Jong-Min OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Recently, the technology of autonomous driving, one of the core of the fourth industrial revolution, is developing, but sensor-based autonomous driving is showing limitations, such as accidents in unexpected situations, To compensate for this, HD-map is being used as a core infrastructure for autonomous driving, and interest in the public and private sectors is increasing, and various studies and technology developments are being conducted to secure the latest and accuracy of HD-map. Currently, NGII will be newly built in urban areas and major roads across the country, including the metropolitan area, where self-driving cars are expected to run, and is working to minimize data error rates through quality verification. Therefore, this study analyzes the spatial relationship of reference objects in the attribute structuring process for rapid and accurate renewal and production of HD-map under construction by NGII, By applying the attribute input automation methodology of the reference object in which spatial relations are established using the library of open source-based PyQGIS, target sites were selected for each road type, such as high-speed national highways, general national highways, and C-ITS demonstration sections. Using the attribute automation tool developed in this study, it took about 2 to 5 minutes for each target location to automatically input the attributes of the spatial relationship reference object, As a result of automation of attribute input for reference objects, attribute input accuracy of 86.4% for high-speed national highways, 79.7% for general national highways, 82.4% for C-ITS, and 82.8% on average were secured.

Adaptive Fuzzy Drop Manager for Service of Reliable Distribution Application Domain Objects (신뢰성 있는 분산 도메인 객체 서비스를 위한 적응형 퍼지 드럽 관리기)

  • Jeong, Taeg-Won;Lee, Chong-Deuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.511-518
    • /
    • 2009
  • A lot of methods are proposed to provide services for object informations in distributed domain to satisfy the recent increase of user-centered services. This paper proposed a method called fuzzy drop manager for the service of reliable distribution application domain objects. The proposed system accesses the domain using replica parameter ci,j and access matrix Z, and evaluates the reference relatedness inside the domain using the relatedness, given by the mapping of intra-domain fuzzy relevance, between fuzzy sets. Objects in the domain generated an $\alpha$-level set according to the reference relatedness obtained by applying $\alpha$-level to extend queries. Simulation results showed that the proposed method has better performance than the other methods.

The Resident Space Object Detection Method Based on the Connection between the Fourier Domain Image of the Video Data Difference Frame and the Orbital Velocity Projection

  • Vasilina Baranova;Alexander Spiridonov;Dmitrii Ushakov;Vladimir Saetchnikov
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.

Nonlinear 3D Image Correlator Using Fast Computational Integral Imaging Reconstruction Method (고속 컴퓨터 집적 영상 복원 방법을 이용한 비선형 3D 영상 상관기)

  • Shin, Donghak;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2280-2286
    • /
    • 2012
  • In this paper, we propose a novel nonlinear 3D image correlator using a fast computational integral imaging reconstruction (CIIR) method. In order to implement the fast CIIR method, the magnification process was eliminated. In the proposed correlator, elemental images of the reference and target objects are picked up by lenslet arrays. Using these elemental images, reference and target plane images are reconstructed on the output plane by means of the proposed fast CIIR method. Then, through nonlinear cross-correlations between the reconstructed reference and the target plane images, the pattern recognition can be performed from the correlation outputs. Nonlinear correlation operation can improve the recognition of 3D objects. To show the feasibility of the proposed method, some preliminary experiments are carried out and the results are presented by comparing the conventional method.

Illumination Compensation Algorithm based on Segmentation with Depth Information for Multi-view Image (깊이 정보를 이용한 영역분할 기반의 다시점 영상 조명보상 기법)

  • Kang, Keunho;Ko, Min Soo;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.935-944
    • /
    • 2013
  • In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers where each layer is composed of objects with a similar depth value. Then we separate objects from each other even in the same layer by labeling each separate region in the layered image. Then, the labeled reference depth image is converted to the position of the distortion image view by using 3D warping algorithm. Finally, we apply an illumination compensation algorithm to each of matched regions in the converted reference view and distorted view. The occlusion regions that occur by 3D warping are also compensated by a global compensation method. Through experimental results, we are able to confirm that the proposed algorithm has better performance to improve coding efficiency.