• Title/Summary/Keyword: Reference Vehicle

Search Result 525, Processing Time 0.035 seconds

The Handling Characteristics of The Independent Rear Wheel Steering Vehicle Using the Reference Model Following Control (기준모델 추종제어를 이용한 독립 후륜조향 차량의 조향 특성해석)

  • 봉우종;이상호;이언구;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-140
    • /
    • 2000
  • In this paper the reference model following control(RMFC) scheme through the optimal control theory is investigated for the independent rear wheel steering(IRWS) vehicle. RMFC vehicle follows the dynamic performance of a virtual vehicle as a reference model deisgned in the controller. Linear vehicle model of two degres-of-freedom is used to derive control scheme which is applied to full vehicle for evaluating handling performances. And 4WS vehicle through RMFC is compared to the conventional 2WS vehicle and 4WS vehicle in the J-turn test. The RMFC logic is also extended to IRWS vehicle, IRWS with RMFC shows not only the excellent handling performance but salso some advantages in terms of the directional stability and responsiveness from the simulation results.

  • PDF

Vehicle Reference Dynamics Estimation by Speed and Heading Information Sensed from a Distant Point

  • Yun, Jeonghyeon;Kim, Gyeongmin;Cho, Minhyoung;Park, Byungwoon;Seo, Howon;Kim, Jinsung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • As intelligent autonomous driving vehicle development has become a big topic around the world, accurate reference dynamics estimation has been more important than before. Current systems generally use speed and heading information sensed from a distant point as a vehicle reference dynamic, however, the dynamics between different points are not same especially during rotating motions. In order to estimate properly estimate the reference dynamics from the information such as velocity and heading sensed at a point distant from the reference point such as center of gravity, this study proposes estimating reference dynamics from any location in the vehicle by combining the Bicycle and Ackermann models. A test system was constructed by implementing multiple GNSS/INS equipment on an Robot Operating System (ROS) and an actual car. Angle and speed errors of 10° and 0.2 m/s have been reduced to 0.2° and 0.06 m/s after applying the suggested method.

Lateral Control of an Autonomous Vehicle by Machine Vision systems

  • Park, Ju-Yong;Hong, Seong-Jae;Jeung, Seung-Gweon;Lee, Man-Hyung;Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.180.1-180
    • /
    • 2001
  • In the autonomous vehicle, the reference lane is continually detected by machine vision system. And then the vehicle is steered to follow the reference yaw rates which are generated by the deviations of lateral distance and the yaw angle between the vehicle and the reference lane. To cope with the steering delay and the side-slip of vehicle, PI controller is introduced for the yaw rate feedback. And it is tuned by the simulation that the vehicle is modeled as 2 DOF verified by the results of the actual vehicle test. The lateral control algorithm by the yaw rate feedback has good performances of lane tracking and passenger comfort.

  • PDF

Lateral Control of Autonomous Vehicle by Yaw Rate Feedback

  • Yoo, Wan-Suk;Park, Ju-Yong;Hong, Seong-Jae;Park, Kyoung-Taik;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.338-343
    • /
    • 2002
  • In the autonomous vehicle, the reference lane is continually detected by machine vision system. And then the vehicle is steered to follow the reference yaw rates which are generated by the deviations of lateral distance and the yaw angle between a vehicle and the reference lane. To cope with the steering delay and the side-slip of vehicle, PI controller is introduced by yaw rate feedback and tuned from the simulation where the vehicle is modeled as 2 DOF and 79 DOF and verified by the results of an actual vehicle test. The lateral control algorithm by yaw rate feedback has good performances of lane tracking and passenger comfort.

Multi-Reference Inverted DGPS System for Automatic Vehicle Location System (차량위치추적 시스템을 위한 다중 기준국 Inverted DGPS 시스템)

  • 홍진석;한승재;지규인;이영재;이장규;최홍석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • For its simplicity and cost effectiveness in implementation, the Inverted DGPS is well suited for some specific applications like automatic vehicle location systems, where the monitoring station needs accurate position of the vehicles in the street. In the Inverted DGPS, the user sends its GPS position and associated satellite informations to the reference station, and the corrections are made at the reference station to get differentially corrected user position. A fundamental requirement in IDGPS is that the user and the reference station must use the same satellites when the corrections are made. But in practice, it is not often satisfied. Inverted DGPS is also suffered from performance degradation as the baseline become large like DGPS. IDGPS system using multi-reference station can resolve this problem. In this paper a simple multi-reference IDGPS algorithm is proposed and some experiments and analysis are peformed. Experiment results show that IDGPS can achieve the positioning performance as accurate as the DGPS can provide.

  • PDF

Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle (우주비행체의 대기권 재진입 기준궤적 해석)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

Development of a Vehicle Positioning Algorithm Using Reference Images (기준영상을 이용한 차량 측위 알고리즘 개발)

  • Kim, Hojun;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1131-1142
    • /
    • 2018
  • The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.

Guidance and Control System Design for the Descent Phase of a Vertical Landing Vehicle

  • Hoshino, Katsutoshi;Shimada, Yuzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.47-52
    • /
    • 1998
  • This study deals with guidance and control laws for an optimal reentry trajectory of a vertical landing reusable launch vehicle (RLV) in the future. First, a guidance law is designed to create the reference trajectory which minimizes propellant consumption. Then, a nonlinear feedback controller based on a linear quadratic regulator is designed to make the vehicle follow the predetermined reference trajectory, The proposed method is simulated for the first stage of the H-II scale rocket.

  • PDF