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Abstract

This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have

transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the

VCU is to determine the optimal torque for driving control. This decision is based on the driver’s power request and current road

conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The

VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle’s

performance. The designed VCU software further refines the final reference torque by comparing the control logic with the

torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle

performance using the model-based VCU software, which includes an ANN.

Index Terms: VCU, ANN, Torque Control, Model-based Software, Electric Vehicle

I. INTRODUCTION

The Korean government announced an electric vehicle

development plan in 2010 to solve environmental issues such

as microdust. Despite the strong support of the Korean gov-

ernment for this plan, electric vehicles are being developed

slowly. However, many small motor companies have been

founded due to the low technical entrance level regarding

powertrains, and they have aimed to change conventional

powertrains to electric powertrains in vehicles. Therefore,

this study began to develop Vehicle Control Unit (VCU)

software to apply to such a powertrain [1].

The VCU designed using model-based software is divided

into high- and low-level software layers. The high-level soft-

ware layer consists of several software modules with a

torque-handling function according to the creep and normal

modes. The reference torque generated by an Artificial Neu-

ral Network (ANN) was implemented as a lookup table in

the software. This reference torque predicts the appropriate

electric motor torque. The low-level software layer consists

of several blocks in the target block set, which handles the

input/output signals based on CAN. This CAN blockset

interacts with the vehicle network toolbox of MATLAB/Sim-

ulink.

The goal of this study was to design model-based ECU

software to optimize the performance of electric vehicles.

The VCU software was evaluated through vehicle tests on

flat and uphill roads by comparing the control logic and

torque calculation functions with the reference torque using

an ANN.
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II. VEHICLE CONTROL UNIT

In Korea, VCU research for EVs and PHEVs is being per-

formed under the leadership of vehicle manufacturers. In

August 2011, 44 automobile manufacturers, research insti-

tutes, and parts companies, including the Hyundai Motor

Company and Mando, formed a consortium and began a

project to improve the performance of five key parts of elec-

tric vehicles: motors, air conditioning, vehicle weight reduc-

tion, batteries, and chargers. We are pursuing a plan to lay

the foundation for the production of mid-sized electric vehi-

cles that can drive more than 200 km on a single charge,

have a maximum speed of 145 km/h, and can be quickly

charged in 25 min. Currently, the Hyundai Motor Company/

Kia Motors electric vehicle development plan for 2018 is to

develop a single-charge electric vehicle. We are focusing on

developing and researching an integrated vehicle control

technology with plans to produce a vehicle capable of driv-

ing over 400 km. As leading electric vehicle companies pro-

moted the mass production of electric vehicles in late 2010,

Hyundai and Kia Motors Group promoted electric vehicle

mass production in 2014 and expanded support for electric

vehicle-related R&D investment expenses to catch up with

leading companies. They account for 1.2% and 8% of China,

respectively. If the domestic electric vehicle market expands,

it will become dependent on foreign products. There are con-

cerns regarding encroachment and technological dependence

on core components. In Korea, hybrid drive system technol-

ogy for passenger cars is being actively developed with the

participation of automobile manufacturers and related com-

panies with government support; however, heavy commer-

cial vehicles such as buses and trucks, which account for a

large portion of the air pollution as a means of public trans-

portation, and research and technology development on duty-

use hybrid drive systems are rarely conducted. Hybrid analy-

sis technology is being actively developed, centering on uni-

versities, but vehicle-integrated control technology is judged

to be very weak compared to that in advanced countries. Ini-

tially, most electric vehicle-related parts were dependent on

imports owing to quality, reliability, and lack of domestic

production, but now many small- and medium-sized compa-

nies, led by Hyundai Mobis and Mando, are supplying the

core parts needed for electric vehicles and plug-in hybrid

vehicles. Efforts are being made to bring the VCU, battery,

BMS, drive motor, inverter, etc. to the level of technological

stabilization. In the commercial vehicle sector, electric buses

and parallel hybrid buses equipped with a VCU developed

by Hyundai Bus have completed a pilot project, and techno-

logical advancement work to mass-produce them is being

conducted in specific sections. In November 2016, Hyundai

Motor Company announced plans for the mass production of

electric buses in 2018.

In Korea, Hyundai Motor Company continues to perform

significant research and investment in the development of

Hybrid Control Units (HCUs) and VCUs. However, the con-

trollers of domestic electric vehicles and plug-in hybrid vehi-

cles still largely use vehicle controllers from foreign

companies. Overseas, companies such as Germany’s Sie-

mens and ZF began development in the 1990s, achieved

mass production in the early 2000s, and are still devoted to

research and development to optimize eco-friendly electric

vehicle controllers. In addition, overseas, vehicle controller

competition is fierce because of the presence of specialized

manufacturing companies. Therefore, each company is

developing its own EV/PHEV vehicle control system struc-

ture and establishing strategies to actively respond to the

current market situation [2].

III. POWERTRAIN SYSTEM FOR ELECTRIC 

VEHICLE

The powertrain, which is combined with a gearbox, is

mounted on an electric vehicle and is connected to the clutch

in the gearbox. The powertrain of an electric vehicle consists

of electric and mechanical traction systems. Fig. 1 shows the

overall block diagram of an electric vehicle powertrain. The

electric traction system is divided into a 3-Phase inverter and

electric motor. The mechanical traction system consists of a

gearbox, differential gear, and drive axle.

Fig. 2 shows that Reckon’s electric motor has a maximum

efficiency of 93% and maximum power of 118 kW. Siemens’

DICO controls an electric motor’s speed and torque through

a 3-Phase inverter based on the VCU’s torque demand.

Fig. 1. Overall block diagram of electric vehicle powertrain

Fig. 2. Efficiency and power of electric motor
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This electric traction system modeling formulated by (1)

and (2). The electromagnetic torque is given by the follow-

ing equation [3,4]:

(1)

The angular acceleration applied to the vehicle dynamics is

(2)

where p is the number of pole pairs, and λ_f is the flux link-

age due to the other rotor magnets linking the stator. i_d and

i_q are the stator currents, and L_d and L_q are the stator

inductances. G_t is the total gear ratio related to gearbox and

differential gear, η_t is the total energy transfer efficiency

related to gearbox and differential gear, R_w is the effective

rolling radius, and μ_x is the coefficient of rolling resistance.

To represent vehicle velocity and acceleration as the con-

trol current for an electric motor, (3) and (4) are derived [4]:

(3)

(4)

Here, a_x as acceleration and v_x as velocity can be applied

to the plant modeling of electric vehicle simulations, such as

SILS, to design the control logic or algorithm before the

vehicle test.

IV. DESIGN OF VCU SOFTWARE FOR ELECTRIC 

VEHICLE

The VCU designed for model-based software is divided

into high- and low-level software layers. Each software mod-

ule is operated according to the execution time of the sched-

uler, and the input/output signals are processed by each

software simultaneously. Figs. 3, 4, and 5 show the main

functions in the top-level VCU software configuration of the

software modules, including scheduler, drive control, ramp

function, and creep function. The low-level software layer

consists of a target blockset, such as a device driver, with

input and output functions.

The main function, the drive control, handles the reference

torque for the electric motor, which is calculated by the input

signals of the accelerator and brake, and this reference

torque is adjusted by the speed and torque limitation. The

final reference torque is then transmitted as the demand from

the VCU to the DICO via CANbus. This function also

includes an ANN with a two-layer feed-forward neural net-

work. The ramp function controls the inclination of the

torque demand by considering the response time according

to vehicle acceleration and deceleration. The creep function

controls the torque and speed of the electric motor in the

case of vehicle departure, and in particular, it operates as an

anti-slip function on a slope.

A. Reference torque calculation

Fig. 5 shows the drive control logic that creates a subsys-

tem and mathematical blocks using MATLAB/Simulink.

This core logic operates as the basic control strategy of the

overall software modules for normal driving and consists of

reference torque calculation, creep control, and torque regen-

eration by braking. This logic involves calculating the

requested torque based on the driver’s acceleration and brake

pedal operations. The maximum torque is determined by the

torque versus speed curve related to the efficiency and power

of the electric motor.

The reference torque for normal driving, that is, the trac-

tion torque, can be obtained as

(5)

where Tref, Tmot, Treg, AG, BC, and C denote the reference

Fig. 4. Creep and launching control logic for uphill

Fig. 3. Creep and launching control logic for flatland
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torque for traction, governor from the accelerator pedal, real

motor torque, braking cutoff for regeneration, brake factor,

and scale adjustment factor, respectively.

B. Reference torque compensation by ANN

The reference torque calculation in the drive-control logic

is normally used as the tractive torque for a vehicle in flat

land, uphill, and downhill conditions, but most engineers try

to calibrate the parameters of this reference torque again

because the performance of the vehicle is not sufficient.

These calibrated parameters, lookup tables, factors, and

amplifiers were applied to the software. The driving perfor-

mance is optimized when calibration is increasingly per-

formed by a test engineer; however, in this case, it is costly

and time-consuming. Thus, most engineers complete the cal-

ibration at an acceptable level, and sometimes the responsi-

bility and driving quality are not good owing to the result of

this calibration.

This paper introduced that According to the input signals

of the accelerator pedal, brake pedal, and motor speed, the

reference torque is determined by the ANN to optimize the

driving performance related to responsibility and driving

quality. The ANN model is designed in the MATLAB/Sim-

ulink environment, as shown in Fig. 6(a), and creates the fit-

ted reference torque, which serves to predict the optimized

reference torque and compensate for the parameters of the

typical reference torque in the drive control logic. The ANN

model consists of subsystems for the normal driving and

creep modes. The normal driving mode consists of a two-

layer feed-forward based on a neural network with three neu-

rons in the input layer, 150 neurons in the hidden layer, and

one neuron in the output layer. The creep mode consists of a

two-layer feed-forward based on a neural network with three

neurons in the input layer, 100 neurons in the hidden layer,

and one neuron in the output layer. All the inputs for the

neural network were the accelerator pedal, brake pedal, and

motor speed, and the output was the reference torque with

calibration, which was trained using the Bayesian Regular-

ization algorithm.

Fig. 6(b) shows that a sigmoid activation function(tansig)

was used in the hidden layer, and a linear function(purelin)

was used in the output layer. Feedforward networks, which

are a common architecture of ANN for static regression

applications, can be represented and calculated as follows [4-

7]:

(5)

where Y_jk is the output of neuron j from layer k, b_jk is the

weight of neuron j in layer k, and W_ijk (the model-fitting

parameters) are randomly selected connection weights. F_k

is a nonlinear activation transfer function that is one of the

main characteristic elements of an ANN with a common sig-

moidal transfer function.

The predictive reference torque model, which is designed

using the neural network toolbox in MATLAB/Simulink, is

shown in Fig. 7. The ANN blocks in Fig. 7(b) are obtained

from the gensim function to generate an embedded code

through the Simulink coder. A Bayesian regularization algo-

rithm was used to train the network to fit the inputs and tar-

get, Bayesian regularization algorithm is used [8,9]. This

algorithm typically requires more time, but can result in

good generalization in the case of difficult, small, or noisy

datasets.

Fig. 5. Drive control logic for normal driving and torque handling

Fig. 6. Proposed ANN structure for reference torque compensation

Fig. 7. Predictive reference torque model-based on ANN
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The ANN model that predicted the reference torque for the

two different datasets was determined after the vehicle test

was completed. Figure 8 illustrates the results of the ANN

models trained for the normal driving and creep modes. Fig.

8(a) shows a performance of 5.4633 at 1000 epochs and

regression values of 0.99988. The inputs had a 3 × 45001

matrix with samples of three elements, and the target had a

1 × 45001 matrix with samples of one element. The valida-

tion and test data were divided into 27001 samples (60%),

9000 samples (20%), and 9000 samples (20%) samples for

training, validation, and testing, respectively. Fig. 8(b) shows

a performance of 12.3692 at epoch 1000 and a regression

value of 0.99974. The inputs had a 3 × 70001 matrix with

samples of three elements, and the target had a 1 × 70001

matrix with samples of one element. The validation and test

data were divided into 42001 samples (60%) for training,

14000 samples (20%) for validation and 14000 samples

(20%) for testing. According to the regression plots below,

the fit was reasonably good for all datasets, with R-values of

0.99 or above.

V. TEST RESULTS OF VCU SOFTEWARE

The purpose of this VCU software test is to evaluate the

driving performance by comparing normal torque control

with torque control based on an ANN through a vehicle test

on straight roads and test hills. The test course of the vehicle

was on a straight road for the normal driving mode and the

gradient of the test hill was 12% for the creep mode and hill

start.

The vehicle specifications for the test were a 1 ton weight,

rear axle ratio of 3.727, and radial 195R14-6PR tires. The

vehicle powertrain (see Table 1 and Fig. 9) consists of

Reckon’s electric motor and Simens’s 3-Phase inverter, and

it is mounted on the chassis frame.

The test was performed in two phases. First, the vehicle

was tested by VCU, which was applied to the software of

normal torque control in flatland and uphill conditions; sec-

ond, the vehicle was tested by VCU, which was applied to

the software of torque control based on ANN under the same

conditions. For safety reasons, vehicle speed was limited to

65 km/h on flat land. To compare the driving performance

with the VCU software, the signals of the accelerator and

brake pedals using CAPL programming in the CANoe tool

were overrode instead of operating the driver’s pedal and

brake. These signals were logged through a vehicle test

under the normal driving and creep modes. CANoe also logs

all datasets on CANbus, such as the vehicle speed, motor

speed, and reference torque. At this time, the driver only

controlled the steering of the vehicle and emergency stop

using the brake pedal during the vehicle test.

Fig. 8. Performance and regression of ANN models

Fig. 9. Structure of powertrain and test environment

Table 1. Test Conditions for Vehicle Driving

Proving 

Ground
Test Case

Operation by CANoe

RemarkAccel Pedal 

(%)

Brake Pedal 

(%)

Flatland

(High speed 

circuit)

Torque control 

by normal 

driving

0%→25% 78%→0%

Torque control 

by ANN
0% →25% 78%→0%

Uphill

(Test hill 

12%)

Torque control 

by normal 

driving

0% 78%→0% Creep mode

Torque control 

by ANN
0% 78%→0% Creep mode
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A. Test Results of VCU Software at Flatland

The purpose of this test was to evaluate whether VCU

software with ANN models has an optimized driving perfor-

mance that is better than that of VCU software with normal

driving logic. Fig. 10(a) illustrates the test results of the

VCU software with the ANN models trained for the normal

driving mode. This paper does not present a comparison with

the test results of the calibrated reference torque and the ref-

erence torque by ANN because the fitting results for the ref-

erence torque are already shown in Fig. 8, and it is known

that the torque control profile between the calibrated refer-

ence torque and reference torque by ANN is the same

through these fitting results.

Fig. 10 shows the results of the vehicle test comparing the

ANN model and normal driving logic on flatland. The refer-

ence torque was output from the accelerator pedal signal and

brake pedal, which was automatically generated using the

CANoe tool. Based on this reference torque, the motor and

vehicle speeds increased.

The reference torque, which only consists of logics, was

fluctuated and tough in the phase of vehicle departure during

that time from 18.2 to 18.8 s in Fig. 10(b). However, the

motor did not respond at the vehicle departure point at this

time because the control function was operated in creep

mode in this phase. In the other phase over 18.8 s, the motor

speed produced a faster and rougher response than the ANN

model, owing to the reference torque. Calibration using the

ANN model was required because of the vehicle response

and unstable reference torque.

Fig. 10(a) shows that the reference torque with the ANN

model was smooth in the phase of vehicle departure during

the time from 35.4 to 36.3 s. Although the motor did not

respond to the vehicle departure point, the reference torque

exhibited a very stable output. In the other phase over 36.4 s,

the motor speed produced an optimized response better than

the normal driving logic according to the reference torque.

To compare the motor speed with the vehicle speed in the

test results, each motor speed and vehicle speed were over-

lapped from the logged datasets using CANoe, as shown in

Fig. 11. Although the deviation of motor speed is small in

phase of vehicle departure, it showed that the vehicle speed

started to make a difference due to the effects of each refer-

ence torque. The VCU software with normal driving logic

had a launching performance in which the vehicle speed was

1 km/h faster than that of the VCU software with the ANN

model at approximately 71.6 s. However, the VCU software

with the ANN model showed better driving performance

after approximately 76.8 s. This test showed that the vehicle

speed increased gradually because the driving performance

was properly optimized by the ANN model.

B. Test Results of VCU Software on Uphill 

This section presents the results of the vehicle test com-

paring the ANN model and the normal driving logic uphill,

as shown in Fig. 12. The reference torque was output from

the accelerator pedal signal and brake pedal, which is auto-

matically generated by the CANoe tool, but the signal for the

accelerator pedal was not generated to evaluate only the ref-

erence torque in the creep mode on uphill. According to this

reference torque, the motor and vehicle speeds increased.

The reference torque was output in the vehicle departure

phase from 33.6 to 36 s in Fig. 12(b), despite no accelerator

Fig. 11. Comparison of motor speed and vehicle speed results on flatlandFig. 10. Results of vehicle test comparing ANN model and normal driving

logic on flatland
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pedal operation. At this time, the VCU software calculated

the slip ratio using the motor speed and direction owing to

the uphill 12% when the brake pedal was released. The

VCU, which was operated in creep mode, produced a proper

response through the reference torque during vehicle depar-

ture uphill. In the phase over 36 s, the motor and vehicle

speeds increased. The VCU software made an unexpected

overshooting, as shown by the reference torque line, because

the motor does not immediately respond to the torque

demand having a dramatic increase of approximately 535

rpm for ∆t of 0.34 s, as shown in Fig. 12(b). Thus, the cali-

bration of the reference torque by the ANN model is

required because of the vehicle response and unstable refer-

ence torque.

Fig. 12(a) shows that the reference torque with the ANN

model was smooth in the phase of vehicle departure during

the time from 61.3 to 63.5 s. Although a large amount of

motor torque was required within a short time, the creep

mode operated well uphill. In the phase over 62.4 s, the

motor speed produced an optimized response compared with

the normal driving logic according to the reference torque.

To compare the motor speed with the vehicle speed in the

test results, each motor speed and vehicle speed were over-

lapped from the logged datasets using CANoe, as shown in

Fig. 13. There was a slight deviation in motor speed in the

phase of vehicle departure, but it showed that the vehicle

speed started to make a difference owing to the effects of the

reference torque fitted by the ANN model. The VCU soft-

ware with the ANN model had a launching and driving per-

formance in which the vehicle speed was 1 km/h faster than

that of the VCU software with normal driving logic at

approximately 51.4 s, and as time passed, the interval of

time between these two software packages increased. This

test showed that the vehicle speed gradually increased during

launching on uphill because the driving performance was

properly optimized by the ANN model.

VI. CONCLUSIONS

The results presented in this paper indicate that VCU soft-

ware improved the starting and driving performances due to

the ANN models through a vehicle test on flatland and

uphill. The VCU software with normal driving logic, which

consists of lookup tables and torque calculation blocks,

showed an unstable control status. Therefore, this can be

considered the root cause of the calibration against the refer-

ence torque. On the other contrary, the ANN models pro-

vided smooth and stable control for the starting and driving

of the vehicle.

The ANN model was generated as blocks for Simulink

after it was designed using the neural networks toolbox in

MATLAB/Simulink, and the VCU software with the ANN

models was verified through a vehicle test. Although the

development method of model-based software is still not

generalized, ANN models are easily implemented and oper-

ate well as a specific function in VCU software.

In conclusion, the model-based VCU software with ANN

models, which predicts the reference torque based on the

accelerator pedal, brake pedal, and motor speed, optimized

the driving performance of an electric vehicle. However,

these ANN models should be checked for different test

cases, and the driving performance under various road condi-

tions should be evaluated.

Fig. 12. Results of vehicle test comparing ANN model and normal driving

logic on uphill

Fig. 13. Comparison of motor speed and vehicle speed test results on uphill
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