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Abstract

This study deals with guidance and control laws for an
optimal reentry trajectory of a vertical landing reusable launch
vehicle (RLV) in the future. First, a guidance law is designed
to create the reference trajectory which minimizes propellant
consumption. Then, a nonlinear feedback controller based on a
linear quadratic regulator is designed to make the vehicle follow
the predetermined reference trajectory. The proposed method

is simulated for the first stage of the H-II scale rocket.

Nomenclature
AW = system matrix
B = control matrix
alb = thrust acceleration vector
(8 = effective exhaust velosity
C, = vehicle axis aerodynamic coefficient
c, = drag coefficient
C, = lift coefficient
Cy = vehicle-normal axis aerodynamic coefficient
d, = defect at the center of the ith segment
fx,u)  =dynamics
g = gravity acceleration
K = feedback gain matrix
m(r) = mass of vehicle
PQ) = solution of the algebraic Riccati equation
o = weighting matrix on state
R = weighting matrix on control
R = radius of the Earth
r(f) = distance from the Earth's center
S = reference area of the vehicle
M = equality constraint vector
t = elapsed time
1.(t,) = inertial flight time (dummy variable)
1,(t,) = powered flight time (dummy variable)
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T@) = magnitude of thrust

u(t) = horizontal velocity

u(t) = control vector

w(!) = vertical velocity

x(t) = downrange

x(t) = state vector

X = horizontal component of external force

z(t) = altitude

Z = vertical component of external force
at) = angle of attack

u = gravitational constant

p(2) = atmospheric density

p, = p(0) = atmospheric density at sea level
2 0] = pitch angle '
W(x, u, ) = boundary constraint vector
subscripts

n : reference value i :node number
0 : initial value f: final value
a : concerned with aerodynamic force

1. Introduction

The aim of this study is to develop guidance and control
laws for recovering a launch vehicle such as the first stage of
the H-II rocket by vertical landing without the aid of
aerodynamic control surfaces. For such a reusable launch vehicle
(RLYV) toreturn to a target landing site, the design of a reference
trajectory and a nonlinear feedback controller for the descent
phase is proposed [1, 2].

The design method comprises of two stages. First, an
optimal trajectory to minimize fuel consumption is designed
through direct collocation with nonlinear programming
(DCNLP) for simplified dynamics [3], in which centrifugal force

is neglected and aerodynamic characteristics are extremely



simplified to escape the complexity of an optimization calculus
(21.

However, due to the neglected and simplified terms, the
actual trajectory is perturbed from the designed reference
trajectory. Dispersion of entry conditions such as initial position
and velocity also influences the trajectory offsets. Therefore, a
nonlinear feedback controller based on a linear quadratic
regulator (LQR) is designed to restrict the actual trajectory to
the reference trajectory [4, 5]. In the design of the LQR, the
nonlinear dynamics of the vehicle is linearized about the
reference trajectory, assuming a small perturbation [6, 1].

The proposed method was applied to simulate the descent
phase of the first stage of the H-II class rocket using simulation
software MATLAB and Simulink. The computer simulation
showed that the controlled trajectory well follows the reference
trajectory over a féir]y wide range of initial state dispersion.

2. Equations of Motion of a RLV

The longitudinal translational and the mass equations are

given by
. u 0 0
; w 0 0
ul= TcosO@/m +i—uw/r|+|X,/m
wi |Tsing/m-p/r| | w2ir | |z, /m| D
m -TIC 0 0
r=z+R )]

The aerodynamic force is given by

[Xa]= [—cos 6 - sin 0] C,lplu? +w?)S 3)
Z, —sin 8 cos 8 ||Cy 2

where p is the exponential atmospheric density.
p=pexp(-z/H),p,= 1752 [kgim?}, H=6.1[km}]  (4)
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Fig. 1 Definition of variables.

3. Optimal Trajectory Design

A landing guidance law for a minimal trajectory is required
to minimize propellant consumption. The problem is described
as the following optimal control problem.

Performance index

J= f ;’ (- =L ';’ T-di )
Constraint
x,= filx.u,) (6)
: 0
L= %cos g 1+{- %WSCD
Lsno-¢| |_Prrrsc,] @
~“T/c 2m 0
x=[x,z,u,w,m]" u,=[T, 0] ®
Constraint on control
0<T<T,. 9
Boundary conditions
Wolxo, g, 15) =0 (10)

Wixp upt,)=0 (1D
Here f, in Eq. (6) indicates a nominal dynamics where the
centrifugal term is neglected, and the aerodynamic term is
simply approximated as a sphere.

C,=02, C,=0.

According to the Pontryagin's maximum principle, the
optimal input takes a value of either O in the period ¢/, or a
kngwn maximum value T, in the period 1,, without taking an
intermediate value. Thus, it is found that the powered flight
period 1, occupies the last part of the entire descent phase.
Therefore, Eq. (5) can be transformed into

T
J="2%,, t—ty=t +1, (12)

c

4. Nonlinear Programming Problem [3)

First, in order to apply NLP, the trajectories in state and
control spaces are divided into segments. Then, state vectors
and control vectors at each node are assembled into the NLP

state vector:

X'={xp, ul, -, xl,ul, - xTul, 1,15, 04, 15] (13)

Here Eq. (12) is involved in Eq. (13). The last two dummy
variables ¢, and ¢, are introduced to convert the apparent



inequalities ¢, > 0, ¢, > O to additional equivalent equality

constraints.
S=[t,-2,,-13]' =0 (14)
The defects and problem constraints are collected into the
NLP constraint vector C:

C'=|d], -, d,,S", ¥, vj|=0 (15)
Here, the defect vectors are calculated as
di = j;(xci' ucl) - X.:c,-
Xy = %(xu +Xx,)+ A{;‘t(f(xu) - flx.)}
u,= %(“n +u,)
. 1
Xy = %(xu +x,)~- Z(f(xu) - flx.)} (16)
¥ left node 'i:ic right node
xir
2 1 - t
O ti-l At,‘ /2 tl tf

Fig. 2 Direct collocation with nonlinear programming

5. Tracking to the Reference Trajectory (5)

The guidance scheme illustrated above makes use of rough
aerodynamic characteristics. Therefore, to track the actual
trajectory to the reference trajectory, an additional feedback
compensator is needed. For the feedback controller design, a
perturbation equation from the reference trajectory can be
written in linear form as

Ax = A(t)Ax + B,Aa, an
Ax =[Ax, Az, Au, Aw, Am]' =x - x, (18)
AaT = [AaTx’ AaTx]T =ar—ar, (19)

The components of A(f) and B, are obtained by differentiating
the nominal dynamics f, by x and u along the reference

trajectory.
af,
A=
0 0 1 0
0 0 0 1
= 0 puVsC, _plu+V2)sC, _ puwSC,
2mH 2mV 2mV
2m___pwVSC,  puwSC,  plw?+V?SC,
(R+2)° 2mH 2mV 2mV

(20)
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In Eq. (17), the modelling error Af = f{x, u) - f (x, u) is neglected.
ar,)_{cos 8,|T
4= [a;uz] “|sin 0,, m (22)

Equation (17) is linear with respect to control (acceleration)
4a, so that LQR works effectively. The nonlinearity between
u and a,is separated from the feedback controller. Thus, the
actual control variables T, 8 are generated by combining a
nonlinear feedforward portion and a linear feedback portion as
follows.

‘Nonlinear feedforward portion :

[ 22 2
T mar +a
u=u, l-Au——| I_[ Tx Tt

0 - tan_l(aTzlaTx) (23)
Linear feedback portion :
_[az] _|cos 8, AaT,
ar= [an] sin 6 j Aa,,] @4

Aséuming the function A(t) is slowly varying, the time-
variant system in Eq. (17) could be regarded as a time-invariant
system. Thus, at each discrete time t, a linear optimal control
problem is formulated as shown in the next section.

6. Linear Quadratic Regulator (LQR)

An optimal feedback control law which minimizes a
quadratic performance index

J= fw (Ax"Q Ax + Au"R Au)d: (25)
0
is obtained as
Aay = - K(1,) Ax (26)
K(t)=R'B]P(t))=R| P, Py | @7
Here P ,(¢,) and P, (¢,) are the submatrices of the positive definite

solution of the algebraic Riccati equation

[PA+ATP—PBR"BTP+Q],I‘=O (28)
Nominal Dynamics

n'n . _
u xn'fn X,

n

Nonlinear Controller Actual Dynamics

S

Fig. 3 Block diagram of guidance and tracking control



7. Simulation results

In the optimal trajectory design, the initial and terminal
conditions, (10) and (11), were specified below.

X free [ X, Olkm]

z;| | 176(km] z, Slkm)

u; | =|5.6[km/s) ugl=| Olkm/s]

wi| |opkmss) | |w,| |-0.005(kmis)| @
m; free m,| | 20,000[ke]

T(0)] _[free T(t)] [ free

[9(0)]‘[ 2l Cols 7c/2] (30)

Since the initial mass of the vehicle is to be minimized by the
numerical optimization procedure, it was left free. The final
mass was specified above including the residual fuel for the
final vertical landing phase.

The simulation program was written in Matlab and
Simulink. The simulation begins at the completion of the
inversion maneuver. '

Aerodynamic forces were considered in this simulation.
Due to the lack of the aerodynamic data concerning the vehicle,
the modified wind tunnel test data, C, and C,, at Mach 0.3 for
the DC-X vehicle were roughly approximated as

cx) =l

Cw
and used in the simulation during the entire descent phase. The

0.755co0s o

1.2sin o Gn

other parameters are as follows.
S =80 [m?]
T, =861=28428 [kN]
l’p =445 [sec]
C=1_+g=4.3639 [km/sec]
Figure 4 (a) shows the designed reference trajectory and

controlled trajectory. It was confirmed that the vehicle could
follow the reference trajectory well.

Figures 4(b) - (d) each illustrate the time histories of
variables of interest.

Figure 5 shows the results for the assumption of 10[km]
of initial position dispersion. Figure 5 (a) shows that the resultant
trajectory could sufficiently follow the reference trajectory even
from dispersed initial points. Due to atmospheric uncertainties,
however, a large correction of thrust was required to be
generated by the tracking controller, to follow the reference
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trajectory,

In the case of Fig. 6, where the initial velocity is assumed
to be dispersed by ![km/sec] in each direction, similar
phenomena is found as for Fig. 5.

8. Summary and Conclusions

In this paper a guidance and control scheme for a RLV
VL without aerodynamic control surfaces, by combining
DCNLP and trajectory tracking scheme with nonlinear
feedforward and linear feedback compensators is presented.

Computer simulation results were performed for the H-1I
first stage rocket. The results for the initial condition dispersions
showed that the tracking performance of the presented controller
was considerably strong.
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Fig. 4 Trajectory and time histories
Q = diag(10%,10%,10%,10), R = I, del_x, = del_z, = del_u, = del_w, = 0
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Fig. 5 Trajectory and time histories
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Fig. 6 Trajectory and time histories

Q = diag(10%,10%,10%,10"), R = L, del_u, = 1[km/sec], del_w, = 1[km/sec]

52



