• Title/Summary/Keyword: Reference Station Network Cell

Search Result 5, Processing Time 0.021 seconds

Efficiency Enhancement Plan of the Ambiguity Leveling System for Multiple Clusters (미지정수 수준 조정을 고려한 다중클러스터 시스템 효율화 방안)

  • Yu, Sunkyoung;Song, Junesol;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.572-578
    • /
    • 2017
  • As the demand of high accuracy positioning for dynamic users increases, Network RTK is actively researched for dynamic users. Network RTK is a system which provides precise positioning in the range of about 50 to 70km radius using carrier phase measurements from several reference stations. By configuring multiple clusters, which provide Network RTK corrections independently, as a single system, it could provide precise positioning for a wider area. In this paper, we have studied how to efficiently operate multiple clusters in the Korean Peninsula. We analyzed the computational load according to the configuration of a multi-cluster system and proposed a method of selecting the main reference station and system infrastructure configuration for efficient operation. In order to analyze the effects of each proposed method, 71 clusters were constructed using the reference stations of the National Geographic Information Institute and simulations were conducted. As a result of the simulation, system computation amount was reduced by 66 % and system configuration cost was reduced by 90 %.

Study on the Ambiguity Difference Adjustment between Reference Station Cells for the Improvement in Rover's Continuous Network-RTK Positioning (Network RTK 항체의 불연속 위치 결정 개선을 위한 기준국 셀간 미지정수 차이 조정 연구)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.619-626
    • /
    • 2012
  • One-way Network-RTK(Real Time Kinematics) is considered as a method which can satisfy moving vehicle's recently-required high accuracy and mobility. When we use one-way Network RTK for vehicle navigation, multiple cells-based system is required to provide the service continuously in wide area. The rover which moves through various cells inevitably experiences a correction discontinuity, which is not eliminated by the DD(Double Difference) method and to cause 13cm(horizontal) and 48cm(vertical) position error. We suggest three solutions to reduce this discontinuity, which are identification of master RS with neighbor networks, duplication of communication module to receive corrections from other cells, and ambiguity adjustment between neighbor cells. All of our suggestions reduce the error to 1/4 wavelength in measurement and 3cm in position-domain, and we suggest the ambiguity adjustment is the best when we consider the extendibility of service area and the cost of rover device.

Cell Edge SINR of Multi-cell MIMO Downlink Channel (다중 셀 MIMO 하향채널의 셀 에지 SINR)

  • Park, Ju-Yong;Kim, Ki-Jung;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.105-117
    • /
    • 2015
  • In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

Performance Analysis of Two-Location Distance-based Registration in Mobile Communication Network (이동통신망에서 이중영역 거리기준 위치등록의 성능 분석)

  • Suh, Jae-Joon;Luo, Yong;Baek, Jang-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.41-50
    • /
    • 2008
  • In this study, an improved scheme for distance-based registration (DBR) is proposed and its performance is analyzed. In the DBR, when a mobile station (MS) enters a new cell, it calculates the distance between last registered cell and current cell and registers its location if the distance reaches reference distance D. In this study, two-location DBR (TDBR) is proposed to improve the performance of the DBR. In the TDBR, an MS stores not only last registered location area (LA) but also previously registered LA, and then no registration is needed when the MS crosses two LAs stored already. However, since the TDBR may increase paging cost, trade-off is necessary between decreased registration cost and increased paging cost. In this study, the performances of two schemes are analyzed and compared using 2-dimensional random walk mobility model in hexagonal cell configuration. We show that our mathematical analysis is accurate by comparing with simulation. From the numerical results for various circumstances, it is shown that our proposed TDBR outperforms current DBR in most cases.

  • PDF

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.