• Title/Summary/Keyword: Reference Observations

Search Result 190, Processing Time 0.027 seconds

Effect of Outliers on Sample Correlation Coefficient

  • Kim, Chooongrak;Park, Byeong U.;Park, Kook L.;Whasoo Bae
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.285-294
    • /
    • 2000
  • In analyzing bivariate date the sample correlation coefficient is often used, and it is quite sensitive to one or few isolated cases. In this article we derive a formula for the effect of $textsc{k}$ observations on the samples correlation coefficient by the deletion method. To give a reference value for the isolated cases the asymptotic distribution fo the formula is derived. Also, we give some interpretations on several types of isolated cases and an example based on a real data set.

  • PDF

Satellite Orbit Determination using the Particle Filter

  • Kim, Young-Rok;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.25.4-25.4
    • /
    • 2011
  • Various estimation methods based on Kalman filter have been applied to the real-time satellite orbit determination. The most popular method is the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF is easy to implement and to use on orbit determination problem. However, the linearization process of the EKF can cause unstable solutions if the problem has the inaccurate reference orbit, sparse or insufficient observations. In this case, the UKF can be a good alternative because it does not contain linearization process. However, because both methods are based on Gaussian assumption, performance of estimation can become worse when the distribution of state parameters and process/measurement noise are non-Gaussian. In nonlinear/non-Gaussian problems the particle filter which is based on sequential Monte Carlo methods can guarantee more exact estimation results. This study develops and tests the particle filter for satellite orbit determination. The particle filter can be more effective methods for satellite orbit determination in nonlinear/non-Gaussian environment.

  • PDF

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF

A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model (다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구)

  • Ryu, Bong-Woo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.

Localization of AUV Using Visual Shape Information of Underwater Structures (수중 구조물 형상의 영상 정보를 이용한 수중로봇 위치인식 기법)

  • Jung, Jongdae;Choi, Suyoung;Choi, Hyun-Taek;Myung, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.392-397
    • /
    • 2015
  • An autonomous underwater vehicle (AUV) can perform flexible operations even in complex underwater environments because of its autonomy. Localization is one of the key components of this autonomous navigation. Because the inertial navigation system of an AUV suffers from drift, observing fixed objects in an inertial reference system can enhance the localization performance. In this paper, we propose a method of AUV localization using visual measurements of underwater structures. A camera measurement model that emulates the camera’s observations of underwater structures is designed in a particle filtering framework. Then, the particle weight is updated based on the extracted visual information of the underwater structures. The proposed method is validated based on the results of experiments performed in a structured basin environment.

Improved National Datum Transformation Parameters of South Korea (국가좌표계 변환요소의 개선)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • In this paper, the historical coordinates data of origin SUWON are reviewed and determination procedures are explained with the three dimensional geocentric coordinates of ITRF94 that is determined using VLBI observations. Also three translation parameters are calculated on the origin point. The national transformation parameters between the Korean geodetic system and Korean Terrestrial Reference Frame 1994(KTRF94) system, are determined using least square methods with weigted parameter constraints. The results of transformation show that one set of parameters are applicable to fixing of a position for GPS relative positioning processing and to adjusting of a network for three dimensional geocentric coordinates(KTRF94) computing.

  • PDF

A Permanent GPS Ground Network for Atmospheric Research on Taiwan

  • Liou, Yuei-An;Wang, Chuan-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1024-1026
    • /
    • 2003
  • The purpose of establishing GPS networks of continuously operating reference stations (CORS) is aimed to assist land surveying or crustal deformation in the early stage. However, with a fast evolving and improving path the GPS technique has been extended to accurately measure atmospheric precip itable water vapor as a core objective of many projects developed in many countries and regions such as the SuomiNet (U.S., UNAVCO), COST716 (European, COST), GEONET (Japan, GSI), ...etc. In this paper, we present the current progress of the being-set-up GPS network in Taiwan whose atmospheric profile observations mainly count on the traditional radiosonde soundings as typically seen in any other part of the world. The GPS data collected from the Taiwan dense GPS network primarily supported by Central Weather Bureau are processed using the Bernese software version 4.2. Precipitable water vapor is then derived with the auxiliary surface meteorological measurements. Time series of precipitable water are examined and analyzed. A focus on the extreme weather cases is shown as an example.

  • PDF

On the origin of low escape fractions in LBGs at z ~ 3

  • Yoo, Taehwa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2018
  • Theoretical models of reionization require that approximately 10% of the Lyman Continumm (LyC) photons escape from their host dark matter haloes and re-ionize neutral hydrogen in the Universe. However, observations of Lyman break galaxies (LBGs) at z~3 report much lower escape fractions of $f_{esc}{\sim}1%$. In an attempt to understand the discrepancy, we perform radiation-hydrodynamics simulations of isolated disk galaxies using RAMSES-RT with high resolution (maximum ~ 9 pc). We find that $f_{esc}$ is ~6% on average for the reference run ($Z=0.1Z{\odot}$), whereas the fraction decreases to ~1% in the case of metal-rich disk ($Z=1Z{\odot}$). This happens because dense metal-poor gas clumps are disrupted early due to strong Lya pressure and supernova explosions, while star particles are trapped for a longer period of time in the metal-rich environments. We also find that $f_{esc}$ is still significant (~4%) even when the amount of metal-poor gas is increased by a factor of 5. Our preliminary results suggest that the low escape fractions in LBGs may be better explained by (locally) metal-enriched gas near young stars than high gas fractions in galaxies.

  • PDF

Atmospheric Pressure Loading Effects on Multi-GNSS Kinematic PPP

  • Choi, Byung-Kyu;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2021
  • Recently, many studies have considered the effect of atmospheric pressure loading (APL) on precise global navigation satellite system (GNSS) data processing. The APL deforms the Earth's crust. It can often exceed 10 mm in radial displacement. In this study, we analyze the APL effect on Multi-GNSS kinematic precise point positioning (PPP). In addition, observations received at two GNSS reference stations (DAEJ and SUWN) in South Korea were processed. The absolute position changes for the two stations were compared to before and after applying the APL effects from January 1 to February 29, 2020. The crust of South Korea was most affected by the APL in the up direction. With the APL model, the difference in daily position changes was mostly within 4 mm in the radial direction. On the other hand, the horizontal components (east-west and north-south) were relatively less affected than the radial component.