Effect of Outliers on Sample Correlation Coefficient †

Choongrak Kim¹, Byeong U. Park², Kook L. Choi³ and Whasoo Bae³

ABSTRACT

In analyzing bivariate data the sample correlation coefficient is often used, and it is quite sensitive to one or few isolated cases. In this article we derive a formula for the effect of k observations on the sample correlation coefficient by the deletion method. To give a reference value for the isolated cases the asymptotic distribution for the formula is derived. Also, we give some interpretations on several types of isolated cases and an example based on a real data set.

Key Words and Phrases: Cancelling Effect, Correlation Coefficient, High Leverage Point, Masking Effect, Outlier.

1. INTRODUCTION

One of the most frequently used statistic when analyzing bivariate data is the sample correlation coefficient. This statistic is very simple and easy to interpret so that many people including nonstatistician use and cite very often. However, like other statistics, the sample correlation coefficient is quite sensitively influenced by one or few observations. Figure 1 shows the scatter diagram for 1985 and 1986 batting averages for 124 American League Players taken from Wardrop(1995). For these Batting Average data, sample correlation coefficient r = 0.554. If we delete case 92 then r = 0.669. Wardrop(1995) noted that

[†]This research is supported by a grant from Korea Science and Engineering Foundation, Project Number 981-0105-022-1.

¹Department of Statistics, Pusan National University, Pusan, Korea, 609-735.

Member of the Research Institute of Computer, Information and Communication.

²Department of Computer Science and Statistics, Seoul National University, Seoul, Korea, 151-742.

³Department of Statistics, Inje University, Kimhae, Korea, 621-749.

"Dropping just one case from 124 - less than 1% of the data - results in a 10% increase in r". Therefore, this case seems to be very influential on r. As in the regression diagnostics context, we might be interested in the following issues: 1. What kind of isolated cases make r larger or smaller when they are deleted? 2. Can we have some guideline to treat a case influential? 3. Is it necessary to delete more than one case simultaneously to detect the masking effect or the cancelling effect?

Figure 1. Scatterplot of 1986 versus 1985 American League batting averages

In this article we derive the influence of one or few observations on the sample correlation coefficient. To do this the most intuitive way is computing

the difference of two sample correlation coefficients based on the full sample and the reduced sample, respectively. A formula for this difference is obtained and the asymptotic distribution of the difference is derived in Section 2. The asymptotic distribution can serve as a guide to decide whether some observations are influential or not. In Section 3, we give some interpretations on several types of isolated cases and an illustrative example based on the Batting Average data.

2. INFLUENCE ON THE CORRELATION COEFFICIENT

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be independent and identically distributed n pairs of random variables. Then we often use the sample correlation coefficient

$$r = S_{XY} / \sqrt{S_{XX}S_{YY}}$$

as an estimator of the correlation between X_1 and Y_1 , where $S_{XX} = \sum (X_i - \bar{X})^2$, $S_{YY} = \sum (Y_i - \bar{Y})^2$, and $S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y})$. Let $K = \{i_1, \dots, i_k\}$ be the index set of a set of k observations. To see the effect of the k observations on r, it is natural to see the difference

$$\Delta_{(K)} = r_{(K)} - r$$

where $r_{(K)}$ denotes the sample correlation coefficient based on n-k observations after deleting the k observations with index in K. After some tedious algebra, it can be shown (see Appendix) that

$$\Delta_{(K)} = \left(\frac{1}{\sqrt{bc}} - 1\right)r - \frac{a}{\sqrt{bcS_{XX}S_{YY}}} \tag{1}$$

where

$$a = \frac{1}{n-k} \sum_{j \in K} p_j \sum_{j \in K} q_j + \sum_{j \in K} p_j q_j$$
 (2)

$$b = 1 - \frac{(\sum_{j \in K} p_j)^2}{(n - k)S_{XX}} - \frac{\sum_{j \in K} p_j^2}{S_{XX}}$$
 (3)

$$c = 1 - \frac{(\sum_{j \in K} q_j)^2}{(n - k)S_{YY}} - \frac{\sum_{j \in K} q_j^2}{S_{YY}}$$
(4)

288

and

$$p_{j} = X_{j} - \bar{X} , \qquad q_{j} = Y_{j} - \bar{Y}. \tag{5}$$

Now, it would be very useful if we suggest a guideline to flag potentially influential observations on r. To do this assumes that X_1 and Y_1 have finite fourth moments, and let $\mu_X = E(X_1)$, $\mu_Y = E(Y_1)$, $\sigma_X^2 = Var(X_1)$, $\sigma_Y^2 = Var(Y_1)$, $\sigma_{XY} = Cov(X_1, Y_1)$, and $\rho = Corr(X_1, Y_1)$. Also, let $Z_i = (X_i - \mu_X)/\sigma_X$ and $W_i = (Y_i - \mu_Y)/\sigma_Y$.

Theorem 1. Suppose $k \to \infty$ in such a way that $k/n \to \lambda(0 < \lambda < 1)$ as $n \to \infty$. Then $n^{1/2}(r_{(K)} - r)$ converges in distribution to $N(0, \tau^2)$ where $\tau^2 = \{\lambda/(1-\lambda)\} \ Var(Z_1W_1 - \rho Z_1^2/2 - \rho W_1^2/2)$.

See the Appendix for the proof of Theorem 1. If (X_1, Y_1) follows standard bivariate normal distribution, i.e.

$$(X_1, Y_1) \sim N_2 \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right) \right)$$

then we can easily show that $\tau^2 = {\lambda/(1-\lambda)}(1-\rho^2)^2$. For practical use, we can replace τ^2 by $\hat{\tau}^2 = {\hat{\lambda}/(1-\hat{\lambda})}(1-r^2)^2$, where $\hat{\lambda} = k/n$.

3. INTERPRETATION OF ISOLATED CASES AND

AN EXAMPLE

Figure 2 shows several types of isolated cases. We first discuss Figure 2(a) and 2(b). Deletion of the *i*-th case in Figure 2(a) makes r smaller (r = 0.878, $r_{(i)} = 0.781$), and deletion of the *i*-th case in Figure 2(b) makes r larger (r = 0.504, $r_{(i)} = 0.781$). In the context of linear regression, these cases can be regarded as "high leverage point" and "outlier", respectively. Therefore, a high leverage point makes r larger and an outlier makes r smaller. The case i in Figure 2(c) is both a high leverage point and an outlier, and deletion of the case i makes r larger(r = 0.444, $r_{(i)} = 0.781$). Hence, if a high leverage point is an outlier, the "high leverage" effect is hidden by the "outlier" effect. For Figure 2(d), two cases i and j are high leverage points, and r = 0.910, $r_{(i)} = 0.878$, $r_{(j)} = 0.869$, and $r_{(i,j)} = 0.781$, i.e., deletion of case i or case j does not alter r very much, but deletion of both cases i and j does make r smaller. Therefore, cases i and j are

individually not influential, but are simultaneously influential. This phenomenon is so called the "masking effect" in the regression diagnostics context. Finally,

Figure 2. Various types of isolated cases

case i is a high leverage point and case j is an outlier in Figure 2(e). Since r = 0.697, $r_{(i)} = 0.504$, $r_{(j)} = 0.878$, and $r_{(i,j)} = 0.781$, they are individually influential, but are not simultaneously influential. We call this phenomenon as "cancelling effect", an apposite concept of the masking effect.

As an illustrative example we use the Batting Average data introduced in Section 1, and the data are given in Table 1. As shown in Figure 1 we see three cases appear to be isolated: case 12 (Wade Boggs (.368, .357)), case 71 (Don Mattingly (.324, .352)) and case 92 (Floyd Rayford (.306, .176)). Cases 12 and 71 are high leverage points and case 92 is an outlier. Table 2 lists ten most influential cases based on $\Delta_K = r_K - r$ for k=1 and 2. Reference values based on Theorem 1 are .011 and .016 for k=1 and 2, respectively. ($\alpha=.01$ is used). Based on these values, 7 cases turned out to be influential for k=1, and 478 pairs of cases out of $\begin{pmatrix} 124 \\ 2 \end{pmatrix}$ pairs are influential for k=2. However, it is not realistic in the sense that almost all cases are influential when k=2. As argued by Kim and Storer(1996), "relative influence" must be considered. For example, Δ_K of case 92 is .05541 and this value is much larger than others, but Δ_K of cases (92, 97) is .0719 and it is not relatively larger than others. Note that ten most influential pairs of cases for k=2 contain case 92 except for the second pair (12, 71). Hence, they are influential due to the "swamping phenomenon". Also, cases 92 and 12 are individually influential, and not simultaneously influential (r=.554and Δ_K =.018 for K=(92, 12)) because of the cancelling effect. Conclusively, we might say that cases 92, 12, and 71 are individually influential.

Table 1. The Batting Average data in Wardrop(1995).

1 0.265 0.264 32 0.248 0.241 63 0.230 0.218 94 0.286 0.252 2 0.309 0.296 33 0.263 0.259 64 0.293 0.287 95 0.282 0.282 3 0.268 0.240 34 0.289 0.310 65 0.277 0.284 96 0.251 0.210 4 0.243 0.229 35 0.238 0.221 66 0.255 0.251 9 0.261 97 0.300 0.233 5 0.289 0.36 0.256 0.300 67 0.265 0.251 9 0.249 6 0.266 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.333 0.246<		1985	1986	No	1985	1986	No	1985	1986	No	1985	1986
2 0.309 0.296 33 0.263 0.259 64 0.293 0.287 95 0.282 0.282 3 0.268 0.240 34 0.289 0.310 65 0.277 0.284 96 0.251 0.210 4 0.243 0.229 35 0.238 0.221 66 0.259 0.261 97 0.300 0.233 5 0.289 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.3	No											
3 0.268 0.240 34 0.289 0.310 65 0.277 0.284 96 0.251 0.210 4 0.243 0.229 35 0.238 0.221 66 0.259 0.261 97 0.300 0.233 5 0.289 0.289 36 0.256 0.300 67 0.265 0.251 98 0.219 0.249 6 0.266 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.227 100 0.283 0.228 9 0.304 0.300 40 0.254 0.274 71 0.342 0.352 102 0.280 0.264 10 0.224 0.2												
4 0.243 0.229 35 0.238 0.221 66 0.259 0.261 97 0.300 0.233 5 0.289 0.289 36 0.256 0.300 67 0.265 0.251 98 0.219 0.249 6 0.266 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.268 0				i l								
5 0.289 0.289 36 0.256 0.300 67 0.265 0.251 98 0.219 0.249 6 0.266 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 76 0.259 0.252 104 0.257 0.282 12 0.368 <td< td=""><td></td><td>1</td><td></td><td>i l</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>		1		i l				1				
6 0.266 0.286 37 0.288 0.306 68 0.263 0.287 99 0.262 0.272 7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 <				L					i			
7 0.231 0.238 38 0.246 0.287 69 0.264 0.227 100 0.283 0.228 8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 75 0.232 0.260 106 0.275 0.287 12 0.368 0.357 43 0.287 0.268 75 0.232 0.260 106 0.275 0.328 12 0.368		i e			1							
8 0.275 0.309 39 0.225 0.250 70 0.218 0.254 101 0.228 0.237 9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237					l		l .					
9 0.304 0.300 40 0.254 0.274 71 0.324 0.352 102 0.280 0.264 10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 73 0.297 0.281 105 0.245 0.212 13 0.248 0.222 44 0.242 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237												
10 0.274 0.301 41 0.282 0.281 72 0.239 0.266 103 0.258 0.246 11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 73 0.297 0.281 105 0.245 0.212 13 0.248 0.222 44 0.242 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242	8	0.275	0.309	39	i		l .					
11 0.295 0.256 42 0.295 0.258 73 0.259 0.252 104 0.257 0.287 12 0.368 0.357 43 0.287 0.268 73 0.297 0.281 105 0.245 0.212 13 0.248 0.222 44 0.242 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111	9	0.304	0.300	40	0.254	0.274	71					
12 0.368 0.357 43 0.287 0.268 73 0.297 0.281 105 0.245 0.212 13 0.248 0.222 44 0.242 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112	10	0.274	0.301	41	0.282	0.281	72	0.239	0.266			
13 0.248 0.222 44 0.242 0.268 75 0.232 0.260 106 0.275 0.326 14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239	11	0.295	0.256	42	0.295	0.258	73	0.259	0.252	104	0.257	0.287
14 0.300 0.310 45 0.270 0.285 76 0.259 0.253 107 0.251 0.204 15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.271 21 0.311	12	0.368	0.357	43	0.287	0.268	73	0.297	0.281	105	0.245	0.212
15 0.335 0.290 46 0.273 0.250 77 0.222 0.203 108 0.215 0.187 16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.277 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262	13	0.248	0.222	44	0.242	0.268	75	0.232	0.260	106	0.275	0.326
16 0.237 0.270 47 0.270 0.218 78 0.295 0.259 109 0.236 0.229 17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.257 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262	14	0.300	0.310	45	0.270	0.285	76	0.259	0.253	107	0.251	0.204
17 0.242 0.256 48 0.296 0.323 79 0.233 0.252 110 0.313 0.265 18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.277 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117	15	0.335	0.290	46	0.273	0.250	77	0.222	0.203	108	0.215	0.187
18 0.299 0.267 49 0.282 0.278 80 0.297 0.305 111 0.258 0.277 19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.277 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197	16	0.237	0.270	47	0.270	0.218	78	0.295	0.259	109	0.236	0.229
19 0.219 0.243 50 0.241 0.265 81 0.267 0.290 112 0.275 0.251 20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.277 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119	17	0.242	0.256	48	0.296	0.323	79	0.233	0.252	110	0.313	0.265
20 0.239 0.269 51 0.314 0.263 82 0.290 0.283 113 0.258 0.277 21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120	18	0.299	0.267	49	0.282	0.278	80	0.297	0.305	111	0.258	0.277
21 0.311 0.278 52 0.244 0.247 83 0.267 0.277 114 0.287 0.316 22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121	19	0.219	0.243	50	0.241	0.265	81	0.267	0.290	112	0.275	0.251
22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122	20	0.239	0.269	51	0.314	0.263	82	0.290	0.283	113	0.258	0.277
22 0.262 0.302 53 0.285 0.283 84 0.259 0.231 115 0.280 0.269 23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122	21	0.311	0.278	52	0.244	0.247	83	0.267	0.277	114	0.287	0.316
23 0.251 0.270 54 0.278 0.267 85 0.239 0.238 116 0.249 0.272 24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123				53	0.285	0.283	84	0.259	0.231	115	0.280	0.269
24 0.293 0.258 55 0.268 0.231 86 0.273 0.257 117 0.245 0.268 25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252	23	0.251	0.270	54	0.278	0.267	85	0.239	0.238	116	0.249	0.272
25 0.197 0.215 56 0.313 0.260 87 0.249 0.276 118 0.285 0.251 26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252				55		0.231	86	0.273	0.257	117	0.245	0.268
26 0.287 0.271 57 0.252 0.241 88 0.257 0.258 119 0.189 0.219 27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252				56	0.313	0.260	87	0.249	0.276	118	0.285	0.251
27 0.287 0.268 58 0.274 0.288 89 0.275 0.265 120 0.244 0.237 28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252				57	1	0.241	88	0.257	0.258	119	0.189	0.219
28 0.244 0.256 59 0.260 0.250 90 0.288 0.328 121 0.278 0.269 29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252							89	0.275	0.265	120	0.244	0.237
29 0.254 0.208 60 0.231 0.229 91 0.276 0.276 122 0.275 0.262 30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252				1	ł		l.	1		121	0.278	0.269
30 0.263 0.267 61 0.243 0.240 92 0.306 0.176 123 0.273 0.252					1		1				0.275	0.262
								1			0.273	0.252
	31	0.262	0.302	62	0.238	0.210	93	0.291	0.324	124	0.277	0.312

	111 0110 12 00011110 11 01000 000000								
=	cases	Δ_K	cases	Δ_K					
=	92.	0.05541	92. 97.	0.07190					
	12.	-0.04101	12. 71.	-0.06678					
	71.	-0.02053	92. 100.	0.06564					
	108.	-0.01591	56. 92.	0.06463					
	97.	0.01483	51. 92.	0.06356					
	25.	-0.01197	47. 92.	0.06281					
	77.	-0.01102	36. 92.	0.06253					
	119.	-0.01001	38. 92.	0.06242					
	100.	0.00903	92. 110.	0.06233					
	56.	0.00795	22. 92.	0.06067					

Table 2. Ten largest cases based on $\Delta_K = r_{(K)} - r$ for k=1 and 2 in the Batting Average data.

APPENDIX

(Proof of Eq.(1))

The equation (1) is a direct consequence of the following three identities:

$$S_{XX(K)} = S_{XX} - \frac{1}{n-k} \{ \sum_{j \in K} p_j \}^2 - \sum_{j \in K} p_j^2$$
 (A.1)

$$S_{YY(K)} = S_{YY} - \frac{1}{n-k} \{ \sum_{j \in K} q_j \}^2 - \sum_{j \in K} q_j^2$$
 (A.2)

$$S_{XY(K)} = S_{XY} - \frac{1}{n-k} \sum_{j \in K} p_j \sum_{j \in K} q_j - \sum_{j \in K} p_j q_j$$
 (A.3)

where $S_{XX(K)}$, $S_{YY(K)}$ and $S_{XY(K)}$ are the corresponding versions of S_{XX} , S_{YY} and S_{XY} with the k observations deleted. We prove (A.3) only. The other two equations follow by a parallel argument.

We start by noting that $\bar{X} - \bar{X}_{(K)} = \sum_{j \in K} p_j/(n-k)$ and $\bar{Y} - \bar{Y}_{(K)} = \sum_{j \in K} q_j/(n-k)$. Now

$$\begin{split} S_{XY(K)} &= \sum_{j \notin K} (X_{j} - \bar{X} + \bar{X} - \bar{X}_{(K)})(Y_{j} - \bar{Y} + \bar{Y} - \bar{Y}_{(K)}) \\ &= \sum_{j \notin K} p_{j}q_{j} + (\bar{X} - \bar{X}_{(K)}) \sum_{j \notin K} q_{j} + (\bar{Y} - \bar{Y}_{(K)}) \sum_{j \notin K} p_{j} \\ &\quad + (n - k)(\bar{X} - \bar{X}_{(K)})(\bar{Y} - \bar{Y}_{(K)}) \\ &= \sum_{j \notin K} p_{j}q_{j} + \frac{1}{n - k} \sum_{j \in K} p_{j}(-\sum_{j \in K} q_{j}) + \frac{1}{n - k} \sum_{j \in K} q_{j}(-\sum_{j \in K} p_{j}) \\ &\quad + \frac{1}{n - k} \sum_{j \in K} p_{j} \sum_{j \in K} q_{j}. \end{split}$$

The desired result follows directly from this.

(Proof of Theorem 1)

Without lose of generality, we may assume $\mu_X = \mu_Y = 0$. We first observe that, for l = 0, 1, 2,

$$n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^l (Y_i - \bar{Y})^{2-l} = n^{-1} \sum_{i=1}^{n} X_i^l Y_i^{2-l} + o_p(n^{-1/2}).$$

This enables use to linearize r in the form of

$$r = T_{XY}/\sigma_X\sigma_Y - \rho (T_{XX} - \sigma_X^2)/2\sigma_X^2 - \rho (T_{YY} - \sigma_Y^2)/2\sigma_Y^2 + o_p(n^{-1/2})$$

= $\rho + T_{XY}/\sigma_X\sigma_Y - \rho T_{XX}/2\sigma_X^2 - \rho T_{YY}/2\sigma_Y^2 + o_p(n^{-1/2})$ (A.4)

where $T_{XX}=\sum_{i=1}^n X_i^2/n$, $T_{YY}=\sum_{i=1}^n Y_i^2/n$, and $T_{XY}=\sum_{i=1}^n X_i Y_i/n$. The asymptotic expansion (A.4) is valid for $r_{(K)}$ too if we replace the sample moments $T_{XX},\,T_{YY},\,T_{XY}$ by the corresponding partial averages of $X_i^2,\,Y_i^2,\,X_iY_i$ for $i\notin K$. Let

$$h_i = \left\{ \begin{array}{ll} -1/n^{1/2} & \text{if} \quad i \in K \\ k/\{n^{1/2}(n-k)\} & \text{if} \quad i \notin K \end{array} \right.$$

then from (A.4) and its equivalent for $r_{(K)}$ we can write

$$n^{1/2}(r_{(K)} - r) = \sum_{i=1}^{n} h_i(Z_i W_i - \rho Z_i^2 / 2 - \rho W_i^2 / 2) + o_p(1)$$
 (A.5)

Note that $\sum_{i=1}^{n} h_i = 0$ and $\sum_{i=1}^{n} h_i^2 = k/(n-k)$, and therefore the mean and the variance of the sum in (A.5) are zero and $\{k/(n-k)\}Var(Z_1W_1 - \rho Z_1^2/2 - \rho W_1^2/2)$,

294

respectively. The asymptotic normality can be easily verified by checking the Lindeberg condition.

REFERENCES

- Kim. C and Storer, B. E. (1996) Reference values for Cook's distance, Communications in Statistics Simulation and Computations, 25, 691-708.
- Wardrop, R. L. (1995) Statistics: Learning in the Presence of Variation,Wm. C. Brown Publishers: Dubuque, Iowa.