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Effect of Outliers on Sample Correlation Coefficient !

Choongrak Kim'!, Byeong U. Park”, Kook L. Choi?
and Whasoo Bae®

ABSTRACT

In analyzing bivariate data the sample correlation coefficient is often
used, and il is quite sensitive to one or few isolated cases. In this article we
derive a formula for the effect of k& observations on the sample correlation
coefficient by the deletion method. To give a reference value for the isolated
cases the asymptotic digiribution for the formula is derived. Also, we give
some interpretations on several types af isolated cases and an example based
on a real data set.

Key Words and Phrases : Cancelling Effect, Correlation Coefficient, High
Leverage Point, Masking Effect, Outlier.

1. INTRODUCTION

One of the most frequently used statistic when analyzing bivariate data
is the sample correlation coefficient. This statistic is very simple and easy to
interpret so that many people including nonsiatistician use and cite very olten.
However, like other statistics, the sample correlation coefficient is quite sensitively
influenced by one or few observations. Figure 1 shows the scatter diagram for
1985 and 1986 batting averages for 124 American League Players taken from
Wardrop(1995). For these Batting Average data, sample correlation coefficient
r = 0.554. If we delete case 92 then r = 0.669. Wardrop{1995) noted that
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“Dropping just one case from 124 - less than 1% of the data - results in a 10%
increase in r 7. Therefore, this case seems to be very influential on r. As in the
regression diagnostics context, we might be interesied in the following issues : 1.
What kind of isolated cases make r larger or smaller when they are deleted? 2.
Can we have some guideline to treat a case influential? 3. Ts it necessary to delete
more than one case simultaneously to detect the masking effect or the cancelling
effect?
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Figure 1. Scatterplot of 1986 versus 1985 American League batting averages

In this article we derive the influence of one or few observations on the
sample correlation coefficient. To do this the most intuitive way is computing
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the difference of two sample correlation coeflicients based on the full sample
and the reduced sample, respectively. A formula for this difference is obtained
and the asymptotic distribution of the difference is derived in Section 2. The
asymptotic distribution can serve as a guide to decide whether some observations
are influential or not. In Section 3, we give some interpretations on several types
of isolated cases and an illustrative example based on the Batting Average data.

2. INFLUENCE ON THE CORRELATION COEFFICIENT

Let (X,Y1), -+,(Xn,¥,) be independent and identically distributed n
pairs of random variables. Then we often use the sample correlation coeflicient

7= Sxv/vSxxSvy

as an estimator of the correlation between X and Y7, where Sxx = 3.(X; — X2,
Syy =Y, — Y)? , and Sxy = 3(X; — X)(V, = ¥). Let K = {iy, -, i} be
the index set of a set of & observations. To see the effect of the % observations on
r, it is natural to see the difference

Agy =1y~

where r(xy denotes the sample correlation coefficient based on n —k observations
after deleting the k observations with index in K. After some tedious algebra, it
can be shown (see Appendix) thai

Ay = (e fyr e 1
K= he " /bc8xx Syy W

where

a=—— 5 Y g+ 3 pi (2)

JjEK jJek JjekK

(Cjexp)®  Tiex i
(n—-k)SXX Syx

b—1-—

(X,ex g;)’ _ 2 jeK q_?

c—=1—
(n—k)Syy Syy
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and

Py =Xy =X, qi :‘Y}'*?- (5)

Now, it would be very useful if we suggest a guideline to flag potentially
influential observations on 7. To do this assumes that X; and ¥| have finite fourth
moments, and let ux = F(X1), py = BE(¥1), o4 = Var{Xy), ¢ = Var(¥y),
oxy = Cov(X1,Y1), and p = Corr(X1,Y1). Also, let Z, = (X, — px)/ox and
W ={Y, — py)/ov.

‘Theorem 1. Suppose & — oo in such a way that k/n — A0 < A < 1} as
n — 0o. Then nl/z(r(m — 1) converges in distribution to N(0,7*) where 72 =
V(L= A} Var(Z0W) — pZ2j2 — pW3/2).

See the Appendix for the proof of Theorem 1. If (X3, ¥7) follows standard bivari-
ate normal distribution, i.e.

o ((0).(22)

then we can easily show that 72 = {A/(1 — A\)}(1 — p?)2. For practical use, we
can replace 72 by #2 = {8/(1 — N }(1 — #%)?, where } = k/n.

3. INTERPRETATION OF ISOLATED CASES AND
AN EXAMPLE

Iigure 2 shows several types of isolated cases. We first discuss Figure 2(a)
and 2(b). Deletion of the i-th case in Figure 2(a) makes r smaller (r = 0.878, i)
= (.781), and deletion of the i-th case in Figure 2(b) makes r larger (r = 0.504,
rpy = 0.781). In the context of linear regression, these cases can be regarded
as “high leverage point” and “outlier”, respectively. Therefore, a high leverage
point makes r larger and an outlier makes r smaller. The case i in Figure 2(c)
is both a high leverage point and an outlier, and deletion of the case i makes r
larger(r= (444, 7y = 0.781). Hence, if a high leverage point is an outlier, the
“high leverage” effect is hidden by the “cutlier” effect. For Figure 2(d), two cases
i and j are high leverage points, and r = 0.910, Ty = 0.878, r;) = 0.869, and
T,y = 0.781, i.e., deletion of case ¢ or case 7 does not alter » very much, but
deletion of both cases i and j does make r smaller. Therefore, cases ¢ and j are
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individually not influential, but are simultaneously influential. This phenomenon
is so called the “masking effect” in the regression diagnostics context. Finally,
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Figure 2. Various types of isolated cases
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case 7 is a high leverage point and case j is an outlier in Figure 2(e). Since r
= 0.697, ryy = 0504, 7y = 0.878, and r(; ;y = 0.781, they are individually
influential, but are not simultaneously influential. We call this phenomenon as
“cancelling effect”, an apposite concept of the masking effect.

As an illustrative example we use the Batting Average data introduced
in Section 1, and the data are given in Table 1. As shown in Figure 1 we see
three cases appear to be isolated : case 12 (Wade Boggs(.368, .357)), case 71
(Don Mattingly (.324, .352)} and case 92 (Floyd Rayford ({.306, .176)). Cases 12
and 71 are high leverage points and case 92 is an outlier. Table 2 lists ten most
influential cases based om Ax = rx — r for k=1 and 2. Reference values based
on Theorem 1 are .011 and .016 for k=1 and 2, respectively. (a=.01 is used).
Based on these values, 7 cases turned out to be influential for k=1, and 478 pairs

124 . . . . L
of cases out of 5 pairs are influential for £=2. However, it is not realistic

in the sense that almost all cases are influential when £=2. As argued by Kim
and Storer(1996), “relative influence” must be considered. For example, Ay of
case 92 is .05541 and this value is much larger than others, but Ax of cases
{92, 97) is .0719 and it is not relatively larger than others. Note that ten most
influential pairs of cases for k=2 contain case 92 except for the second pair (12,
71). Hence, they are influential due to the “swamping phenomenon”. Also, cases
92 and 12 are individually influential, and not simultaneously influential (r=.554
and Ax=.018 for K=(92, 12)) because of the cancelling effect. Conclusively, we
might say that cases 92, 12, and 71 are individually influential.
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Table 1. The Batting Average data in Wardrop(1995).
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No

1985

1986 | No | 1985

1986 | No | 1985

1986 | No | 1985

1986

1

T U s L b2

eliNe sl |

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3l

0.265
0.309
0.268
0.243
0.259
0.266
0.231
0.275
(.304
0.274
0.205
0.368
0.248
0.300
0.335
0.237
{.242
0.299
0.219
0.239
0.311
0.262
0.251
0.293
3.197
0.287
0.287
0.244
0.254
0.263
(0.262

(0.264
(0.296
0.240
0.229
0.289
0.286
0.238
0.309
(.300
0.301
0.250
0.357
0.222
0.310
0.290
0.270
(1.256
0.267
0.243
0.269
0.278
0.302
0.270
0.258
0.215
(0.271
0.268
0.256
0.208
0.267
0.302

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
53
54
55
56
57
h8
39
60
61
62

0.248
0.263
0.239
(0.238
(0.256
0.288
0.246
0.225
0.254
0.282
0.295
0.287
0.242
0.270
0.273
0.270
0.296
0.282
0.241
0.314
0.244
0.285
0.278
0.268
0.313
0.252
0.274
0.260
0.231
0.243
0.238

0.241
0.259
0.310
0.221
0.300
0,306
0.287
0.250
0.274
0.2581
0.258
0.268
0.268
.285
0.250
0.218
0.323
0.278
0.265
0.263
0.247
0.283
0.267
0.231
0.260
0.241
0.288
0.250
0.229
0.240
0.210

63
fid
65
66
67
68
69
70
71

0.230
0.293
Q.277
(1.259
0.265
0.263
0.264
0.218
0.324
0.239
0.259
0.297
0.232
(0.259
0.222
0.295
0.233
0.297
0.267
(0.290
(L.267
0.259
0.239
0.273
0.249
0.257
0.275
0.288
0.276
(.306
0.201

0.218
0.287
0.284
0.261
0.251
0.287
0.227
0.254
(.352
0.266
0.252
0.281
0.260
0.253
0.203
0.259
0.252
0.305
0.290
0.283
0.277
0.231
0.238
0.257
0.276
(.258
(0.265
0.328
0.270
0.176
0.324

94

95

96

a7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

().286
0.282
0.251
0.300
0.219
0.262
0.283
0.228
0.230
0.258
0.257
0.245
0.275
0.251
0.215
0.236
0.313
0.258
0.275
0.258
0.287
(.280
(0.249
(.245
(.285
0.189
0.244
0.278
0.275
0.273
0.277

0.252
(0.282
0.210
(.233
0.249
0.272
0.228
0.237
0.264
0.246
(1.287
0.212
0.326
0.204
0.187
0.229
0.265
0.277
0.251
0.277
(.316
0.269
0.272
0.268
0.251
0.219
(0.237
0.269
0.262
0.252
0.312
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Table 2. Ten largest cases based on A = 7 gy — r for k=1 and 2

in the Batting Average data.

C15€5 Ax cases A
92. 0.05541 92.  97. 0.07190
12. -0.04101 12, 7L -0.06678
71. -0.02053 92, 100. 0.06564
108. -(.01591 56, 92. (.06463
97. (.01483 51. 92, 0.06356
25. -0.01197 47, 92. 0.06281
77. -0.01102 36. 92, 0.06253
119, -0.01001 8. 92, 0.06242
100. 0.00903 92. 110. 0.06233
56. 0.00795 22, 92 0.06067
APPENDIX
(Proof of Eq.(1))
The equation (1) is a direct consequence of the following three identities :
1
Sxx(r) = Sxx — _——k{z ny -3 (A.1)
& 1K 26K
1 2 2
Syyiry = Syy — m{z u =>4 (A.2)
JeK JEeK
1
Sxv(r)=Sxy = =13 By D4 = D Pity (A.3)
JEK  jEK JeK

where Sx x(x), Svy (i) and Syy(x) are the corresponding versions of Sxx, Syv
and Sxy with the & observations deleted. We prove {A.3) only. The other two
equations follow by a parallel argument.



Onutliers in Correlation Coefficient 293

We start by noting that X—X(K) = ZJEK p,/(n—k) and }_’——}_'(K) = Z_geK ¢,/ (n—
k). Now

Sxvian = (X —X+X XY -V +Y - Y
JEK
Spigp+ (X - Xue) D+ ¥ —Yue) X p,
1¢K 1¢K JEH

Hn = BYX = X)) (Y = Yig)

= E:%%+ELEZBM—E}m+niE§:%P§:m)

JER JeEX JEK JEK JEK
i
_l_n — k Zpi' Z ;-
JEK  jER

The desired result follows directly from this.
(Proof of Theorem 1)

Without lose of generality, we may assume py = py = 0. We first observe
that, for [ = 0,1, 2,

n T
R YOG - X) TP = XY gy )
i=1

=1

This enables use to linearize r in the form of

r = Txyjoxay —p (Txx —0%)/20% — p (Tyy — 0f) /208 + op(n/?)
= p+Txvioxoy —p TXX/QJ_%( — pTyy—/ch}Qf + op(nfl/z) (A.4)

where Txx = Sooq X2 /n, Tyy = Yo YZ/n, and Txy = &%, X,Y,/n. The
agymptolic expansion (A.4) is valid for r(zy too if we replace the sample moments
Txx, Tyy, Txy by the corresponding partial averages of Xf, V2 XY, fori¢ K
. Let

" { —1/nt/? of 1eK

‘ Efin'?(n—k)} if i¢ K

then from (A.4) and its equivalent for r(,) we can write
k)
n 2 (rey ) =3 hi(ZW, — p 2712 — p W2/2) + 0y (1) (A.5)
=1

Note that 7 h; = 0 and 3.7 | A? = k/(n—k), and therefore the mean and the
variance of the sum in (A.5) are zero and {k/{(n—k)}Var(Z,W,—pZ3/2— gW2/2),
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respectively. The asymptotic normality can be easily verified by checking the
Lindeberg condition.
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