• Title/Summary/Keyword: Reference Genes

Search Result 225, Processing Time 0.033 seconds

Statistical Analysis of a Loop Designed Microarray Experiment Data (되돌림설계를 이용한 마이크로어레이 실험 자료의 분석)

  • 이선호
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.419-430
    • /
    • 2004
  • Since cDNA microarray experiments can monitor expression levels for thousands of genes simultaneously, the experimental designs and their analyzing methods are very important for successful analysis of microarray data. The loop design is discussed for selecting differentially expressed genes among several treatments and the analysis of variance method is introduced to normalize microarray data and provide estimates of the interesting quantities. MA-ANOVA is used to illustrate this method on a recently collected loop designed microarray data at Cancer Metastasis Research Center, Yonsei University.

In Silico Identification of 6-Phosphogluconolactonase Genes that are Frequently Missing from Completely Sequenced Bacterial Genomes

  • Jeong, Hae-Young;F. Kim, Ji-Hyun;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.4 no.4
    • /
    • pp.182-187
    • /
    • 2006
  • 6-Phosphogluconolactonase (6PGL) is one of the key enzymes in the ubiquitous pathways of central carbon metabolism, but bacterial 6PGL had been long known as a missing enzyme even after complete bacterial genome sequence information became available. Although recent experimental characterization suggests that there are two types of 6PGLs (DevB and YbhE), their phylogenetic distribution is severely biased. Here we present that proteins in COG group previously described as 3-oarboxymuconate cyclase (COG2706) are actually the YbhE-type 6PGLs, which are widely distributed in Proteobacteria and Fimicutes. This case exemplifies how erroneous functional description of a member in the reference database commonly used in transitive genome annotation cause systematic problem in the prediction of genes even with universal cellular functions.

PathTalk: Interpretation of Microarray Gene-Expression Clusters in Association with Biological Pathways

  • Chung, Tae-Su;Chung, Hee-Joon;Kim, Ju-Han
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.124-128
    • /
    • 2007
  • Microarray technology enables us to measure the expression of tens of thousands of genes simultaneously under various experimental conditions. Clustering analysis is one of the most successful methods for analyzing microarray data using the assumption that co-expressed genes may be co-regulated. It is important to extract meaningful clusters from a long unordered list of clusters and to evaluate the functional homogeneity and heterogeneity of clusters. Many quality measures for clustering results have been suggested in different conditions. In the present study, we consider biological pathways as a collection of biological knowledge and used them as a reference for measuring the quality of clustering results and functional homogeneities. PathTalk visualizes and evaluates functional relationships between gene clusters and biological pathways.

Identification of Differentially Regulated Genes in the Brain of Limanda yokohamae from Masan Bay, Korea

  • Oh, Jeong-Hwan;Moon, Hyo-Bang;Choe, Eun-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.95-99
    • /
    • 2009
  • Transcriptomic changes in the brain of Limanda yokohamae were investigated to understand the environmental condition of Masan Bay, Korea. Differentially expressed genes (DEGs) in the brain of the flat fish from Masan Bay were identified by comparing those from the reference site Gangneung using annealing control primers-based polymerase chain reaction. The results demonstrated that two different kinds of the cytoplasmic ribosomal proteins, 40 s ribosomal protein S27a and ribosomal protein L6, were identified by the BLAST searching followed by sequence analysis. These findings suggest that environmental status of Masan Bay could hinder protein synthesis that is required for maintaining brain functions and thus cause the dysfunction of fish physiology.

The Uneven Distribution of Mating Type Genes in Natural and Cultivated Truffle Orchards Contributes to the Fructification of Tuber indicum

  • Li, Qiang;Fu, Yu;Sun, Qun;Sourzat, Pierre;Yang, Mei;Liu, Chengyi;Tan, Hao;Ye, Lei;Zou, Jie;Wu, Chenguang;Zhang, Bo;Li, Xiaolin
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • The aim of this study was to investigate the pattern of distribution of mating type (MAT) genes of Tuber indicum in ectomycorhizosphere soils from natural T. indicum-producing areas and cultivated truffle orchards and ascocarp samples from different regions. Quantitative real-time PCR and multiplex PCR were used to weight the copy numbers of MAT1-1-1 and MAT1-2-1 in natural truffle soils and cultivated orchard soils. The effect of limestone on the pattern of truffle MAT genes and the correlation between soil properties and the proportion of MAT genes were also assessed. These results indicated that an uneven and nonrandom distribution of MAT genes was common in truffle-producing areas, cultivated truffle orchards, and ascocarps gleba. The competition between the two mating type genes and the expansion of unbalanced distribution was found to be closely related to truffle fructification. Limestone treatments failed to alter the proportion of the two mating type genes in the soil. The content of available phosphorus in soil was significantly correlated with the value of MAT1-1-1/MAT1-2-1 in cultivated and natural ectomycorhizosphere soils. The application of real-time quantitative PCR can provide reference for monitoring the dynamic changes of mating type genes in soil. This study investigates the distributional pattern of T. indicum MAT genes in the ectomycorhizosphere soil and ascocarp gleba from different regions, which may provide a foundation for the cultivation of T. indicum.

Microarray analysis of gene expression in raw cells treated with scolopendrae corpus herbal-acupuncture solution (蜈蚣(오공) 약침액(藥鍼液)이 LPS로 처리된 RAW 세포주(細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Bae, Eun-Hee;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Korean Journal of Acupuncture
    • /
    • v.23 no.3
    • /
    • pp.133-160
    • /
    • 2006
  • Objectives : Scolopendrae Corpus has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as arthritis. To explore the global gene expression profiles in human Raw cell lines treated with Scolopendrae Corpus herbal-acupuncture solution (SCHAS), cDNA microarray analysis was performed. Methods : The Raw 264.7 cells were treated with lipopolysaccharide (LPS), SCHAS, or both. The primary data was normalized by the total spots of intensity between two groups, and then normalized by the intensity ratio of reference genes such as housekeeping genes in both groups. The expression ratio was converted to log2 ratio. Normalized spot intensities were calculated into gene expression ratios between the control and treatment groups. Greater than 2 fold changes between two groups were considered to be of significance. Results : Of the 8 K genes profiled in this study, with a cut-off level of two-fold change in the expression, 20 genes (BCL2-related protein A1, MARCKS-like 1, etc.) were upregulated and 5 genes (activated RNA polymerase II transcription cofactor 4, calcium binding atopy-related autoantigen 1, etc.) downregulated following LPS treatment. 139 genes (kell blood group precursor (McLeod phenotype), ribosomal protein S7, etc.) were upregulated and 42 genes (anterior gradient 2 homolog (xenopus laevis), phosphodiesterase 8B, etc.) were downregulated following SCHAS treatment. And 10 genes (yeast saccharomyces cerevisiae intergeneic sequence 4-1, mitogen-activated protein kinase 1, etc.) were upregulated and 8 genes (spermatid perinuclear RNA binding protein, nuclear receptor binding protein 2, etc.) were downregulated following co-stimulation of SCHAS and LPS. Discussions : It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of SCHAS in the treatment of arthritis. But further studies are required to concretely prove the effectiveness of SCHAS.

  • PDF

A Smooth Trajectory Generation for an Inverted Pendulum Type Biped Robot (도립진자형 이족보행로봇의 유연한 궤적 생성)

  • Noh Kyung-Kon;Kong Jung-Shik;Kim Jin-Geol;Kang Chan-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.112-121
    • /
    • 2005
  • This paper is concerned with smooth trajectory generation of biped robot which has inverted pendulum type balancing weight. Genetic algorithm is used to generate the trajectory of the leg and balancing weight. Balancing trajectory can be determined by solving the second order differential equation under the condition that the reference ZMP (Zero moment point) is settled. Reference ZMP effect on gait pattern absolutely but the problem is how to determine the reference ZMP. Genetic algorithm can find optimal solution under the high order nonlinear situation. Optimal trajectory is generated when use genetic algorithm which has some genes and a fitness function. In this paper, minimization of balancing joints motion is used for the fitness function and set the weight factor of the two balancing joints at the fitness function. Inverted pendulum type balancing weight is very similar with human and this model can be used fur humanoid robot. Simulation results show ZMP trajectory and the walking experiment made on the real biped robot IWR-IV.

In Silico Evaluation of Deleterious SNPs in Chicken TLR3 and TLR4 Genes

  • Shin, Donghyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.209-217
    • /
    • 2018
  • The innate immune recognition is based on the detection of microbial products. Toll-like receptors (TLRs) located on the cell surface and the endosome senses microbial components and nucleic acids, respectively. Chicken TLRs mediate immune responses by sensing ligands from pathogens, have been studied as immune adjuvants to increase the efficacy of vaccines. Single nucleotide polymorphisms (SNPs) of TLR3 and TLR4 genes in chicken were associated with resistance and susceptibility to viral infection. In this study, SNPs of chTLR3 and chTLR4 genes were retrieved from public database and annotated with chicken reference genome. Three-dimensional models of the chTLR3 and chTLR4 proteins were built using a Swiss modeler. We identified 35 and 13 nsSNPs in chTLR3 and chTLR4 genes respectively. Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (Polyphen-2) analyses, suggested that, out of 35 and 13 nsSNPs, 4 and 2 SNPs were identified to be deleterious in chTLR3 and chTLR4 gene respectively. In chTLR3, 1 deleterious SNP was located in ectodomain and 3 were located in the Toll / IL-1 receptor (TIR) domain. Further structural model of chTLR3-TIR domain suggested that 1 deleterious SNP be present in the B-B loop region, which is important for TIR-TIR domain interactions in the downstream signaling. In chTLR4, the deleterious SNPs were located both in the ectodomain and TIR domain. SNPs predicted for chTLR3 and chTLR4 in this study, might be related to resistance or susceptible to viral infection in chickens. Results from this study will be useful to develop the effective measures in chicken against infectious diseases.

Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

  • Luan, Xinhong;Cao, Zhongzan;Xu, Wen;Gao, Ming;Wang, Laiyou;Zhang, Shuwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.921-929
    • /
    • 2013
  • Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.

C13orf18 and C1orf166 (MULAN) DNA Genes Methylation are Not Associated with Cervical Cancer and Precancerous Lesions of Human Papillomavirus Genotypes in Iranian Women

  • Sohrabi, Amir;Mirab-Samiee, Siamak;Rahnamaye-Farzami, Marjan;Rafizadeh, Mitra;Akhavan, Setareh;Hashemi-Bahremani, Mohammad;Modarressi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6745-6748
    • /
    • 2014
  • Background: Nowadays, molecular biomarkers have critical roles for cancer diagnosis and prognosis in clinical laboratories. Human papillomaviruses are the main agents for etiology of cervical carcinoma. The present survey was conducted to evaluate the genes methylation in cervical cancer and precancerous lesions involvement with HPV genotypes. Materials and Methods: C13orf18 and C10rf166 (MULl or Mulan) DNA methylation as potential biomarkers and risk factors was investigated in 112 liquid based cytology and Formalin-Fixed Paraffin-Embedded tissue specimens in Iranian females with cervical intraepithelial neoplasia and dysplasia. Results: In this survey, HPV18 (61.6%) and HPV16 (42.9%) proved to be the most common HPV genotypes identified by In-House Multiplex Real Time PCR. There were no significant relationship between HPV positivity and the methylated DNA genes mentioned above (p>0.05). Conclusions: Our MethyLight data demonstrated that these genes could not be considered as specific, sensitive and suitable prognostic biomarkers in cervical dysplasia related HPV. It is suggested that further studies with more patients should be done on candidate methylated markers in different countries in order to plan for cervical cancer prevention.