Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13083

Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese  

Luan, Xinhong (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University)
Cao, Zhongzan (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University)
Xu, Wen (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University)
Gao, Ming (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University)
Wang, Laiyou (Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center)
Zhang, Shuwei (Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.7, 2013 , pp. 921-929 More about this Journal
Abstract
Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.
Keywords
Huoyan Goose; Pituitary Gland; Laying; Ceased; Suppression Subtractive Hybridization; Quantitative Real-time PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomizawa, K., J. Ohta, M. Matsushita, A. Moriwaki, S. T. Li, K. Takei, and H. Matsui. 2002. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci. 22:2590-2597.
2 Ullrich, M., K. Bundschu, P. M. Benz, M. Abesser, R. Freudinger, T. Fischer, J. Ullrich, T. Renne, U. Walter, and K. Schuh. 2011. Identification of SPRED2 (Sprouty-related protein with EVH1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J. Biol. Chem. 286:9477-9488.   DOI   ScienceOn
3 Varju, P., K. C. Chang, E. Hrabovszky, I. Merchenthaler, and Z. Liposits. 2009. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells. Neurochem. Int. 54:119-134.   DOI   ScienceOn
4 Yen, C. F., H. W. Lin, J. C. Hsu, C. Lin, T. F. Shen, and S. T. Ding. 2006. The expression of pituitary gland genes in laying geese. Poult. Sci. 85:2265-2269.   DOI
5 Kuo, Y. M., Y. L. Shiue, C. F. Chen, P. C. Tang, and Y. P. Lee. 2005. Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64:1490-1502.   DOI   ScienceOn
6 Langley, K., and N. J. Grant. 1997. Are exocytosis mechanisms neurotransmitter specific? Neurochem. Int. 31:739-757.   DOI   ScienceOn
7 Martin, T. F. 2003. Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. Acta. 1641:157-165.   DOI   ScienceOn
8 McCarthy, F. M., S. M. Bridges, N. Wang, G. B. Magee, W. P. Williams, D. S. Luthe, and S. C. Burgess. 2007. AgBase: a unified resource for functional analysis in agriculture. Nucleic Acids Res. 35:D599-D603.   DOI   ScienceOn
9 Padmanabhan, V., F. J. Karsch, and J. S. Lee. 2002. Hypothalamic, pituitary and gonadal regulation of FSH. Reprod. Suppl. 59:67-82.
10 Phoenix, T. N., and S. Temple. 2010. Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev. 24:45-56.   DOI   ScienceOn
11 Rowlands, D., A. Williams, N. Jones, S. Guest, G. Reynolds, P. Barber, and G. Brown. 1995. Stathmin expression is a feature of proliferating cells of most, if not all, cell lineages. Lab. Invest. 72:100-113.
12 Rubin, C. I., and G. F. Atweh. 2004. The role of stathmin in the regulation of the cell cycle. J. Cell. Biochem. 93:242-250.   DOI   ScienceOn
13 Sheppard, M., J. Kraicer, and J. Milligan. 1980. Mechanisms governing the release of growth hormone from acutely dispersed purified somatotrophs. In: Synthesis and Release of Adenohypophyseal Hormones (Ed. M. Jutisz and K. W. McKems). Plenum Press, New York. pp. 495-523.
14 Shi, Z., Y. Huang, Z. Liu, Y. Liu, X. Li, J. Proudman, and R. Yu. 2007. Seasonal and photoperiodic regulation of secretion of hormones associated with reproduction in Magang goose ganders. Domest. Anim. Endocrinol. 32:190-200.   DOI   ScienceOn
15 Shin, O. H., J. Xu, J. Rizo, and T. C. Sudhof. 2009. Differential but convergent functions of $Ca^{2+}$ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release. Proc. Natl. Acad. Sci. 106:16469-16474.   DOI   ScienceOn
16 Shiue, Y. L., L. R. Chen, C. F. Chen, Y. L. Chen, J. P. Ju, C. H. Chao, Y. P. Lin, Y. M. Kuo, P. C. Tang, and Y. P. Lee. 2006. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66:1274-1283.   DOI   ScienceOn
17 Steegmaier, M., J. Klumperman, D. L. Foletti, J. S. Yoo, and R. H. Scheller. 1999. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol. Biol. Cell. 10:1957-1972.   DOI
18 Advis, J. P., J. W. Simpkins, H. T. Chen, and J. Meites. 1978. Relation of biogenic amines to onset of puberty in the female rat. Endorinology 103:11-16.   DOI   ScienceOn
19 Takeichi, M., and K. Abe. 2005. Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol. 15:216-221.   DOI   ScienceOn
20 Thorner, M., J. Hackett, F. Murad, and R. MacLeod. 1980. Calcium rather than cyclic AMP as the physiological intracellular regulator of prolactin release. Neuroendocrinology 31:390-402.   DOI
21 Bates, M. D., and P. M. Conn. 1984. Calcium mobilization in the pituitary gonadotrope: relative roles of intra-and extracellular sources. Endorinology 115:1380-1385.   DOI   ScienceOn
22 Chen, H., G. Mueller, and J. Meites. 1974. Effects of L-dopa and somatostatin on suckling-induced release of prolactin and GH. Endocr. Res. 1:283-291.
23 Diatchenko, L., Y. F. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov, and P. D. Siebert. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93:6025-6030.   DOI   ScienceOn
24 Ding, S., C. Yen, P. Wang, H. Lin, J. Hsu, and T. Shen. 2007. The differential expression of hepatic genes between prelaying and laying geese. Poult. Sci. 86:1206-1212.   DOI
25 Drouva, S. V., B. Poulin, V. Manceau, and A. Sobel. 1998. Luteinizing hormone-releasing hormone-signal transduction and stathmin phosphorylation in the gonadotrope ${\alpha}T3-1$ cell line. Endorinology 139:2235-2239.   DOI   ScienceOn
26 Etches, R., J. Petitte, and C. Anderson-Langmuir. 1984. Interrelationships between the hypothalamus, pituitary gland, ovary, adrenal gland, and the open period for LH release in the hen (Gallus domesticus). J. Exp. Zool. 232:501-511.   DOI   ScienceOn
27 Kang, B., J. R. Guo, H. M. Yang, R. J. Zhou, J. X. Liu, S. Z. Li, and C. Y. Dong. 2009. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult. Sci. 88:1975-1983.   DOI   ScienceOn
28 Geppert, M., Y. Goda, R. E. Hammer, C. Li, T. W. Rosahl, C. F. Stevens, and T. C. Südhof. 1994. Synaptotagmin I: A major $Ca^{2+}$ sensor for transmitter release at a central synapse. Cell 79:717-727.   DOI   ScienceOn
29 Hall, T. R. 1982. Neurotransmitter effects on release of prolactin and growth hormone in vitro from pituitary glands of the pigeon, Columba livia. J. Endocrinol. 92:303-308.   DOI   ScienceOn
30 Howard, P. W., S. F. Jue, and R. A. Maurer. 2009. Expression of the synaptotagmin I gene is enhanced by binding of the pituitary-specific transcription factor, POU1F1. Mol. Endocrinol. 23:1563-1571.   DOI   ScienceOn
31 Knight, D. E., and P. F. Baker. 1987. Exocytosis from the vesicle viewpoint: an overview. Ann. N. Y. Acad. Sci. 493:504-523.   DOI
32 Ko, J., S. Humbert, R. T. Bronson, S. Takahashi, A. B. Kulkarni, E. Li, and L. H. Tsai. 2001. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21:6758-6771.
33 Koh, T. W., and H. J. Bellen. 2003. Synaptotagmin I, a $Ca^{2+}$ sensor for neurotransmitter release. Trends Neurosci. 26:413-422.   DOI   ScienceOn
34 Kreft, M., V. Kuster, S. Grilc, M. Rupnik, I. Milisav, and R. Zorec. 2003. Synaptotagmin I increases the probability of vesicle fusion at low [$Ca^{2+}$] in pituitary cells. Am. J. Physiol. Cell Physiol. 284:C547-C554.   DOI   ScienceOn