• 제목/요약/키워드: Redundant manipulator

검색결과 119건 처리시간 0.036초

여유자유도 유연 매니퓰레이터의 위치제어 (Position Control of a Redundant Flexible Manipulator)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.83-89
    • /
    • 2001
  • In this paper, we discuss the vibration suppression control of spatial redundant flexible manipulators through pseudo-inversed of Jacobian. In order to verify our method, the experiments are performed for PTP(Point To Point) motion of spa-tial flexible manipulators(1) with no redundancy(2) with one redundant DOF(degree of freedom). Finally, a comparison between these results is presented to show the performance of out approach.

  • PDF

Implementation of Real Time Visual Servoing Control for Robot Manipulator

  • Han, Sung-Hyun;Jung, Ding-Yean;Kim, Hong-Rae;Hashmoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1650-1654
    • /
    • 2004
  • This paper presents how it is effective to use many features for improving the speed and the accuracy of the visual servo systems. Some rank conditions which relate the image Jacobian and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm Robot manipulator made in Samsung Electronic Co. Ltd.

  • PDF

Real Time Implementation of Visual Servoing Control For Dual-Arm Robot Manipulator

  • Han, Sung-Hyun;Kim, Jung-Soo;Kim, Hong-Rae;Hashmoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.778-782
    • /
    • 2003
  • This paper presents how it is effective to use many features for improving the speed and the accuracy of the visual servo systems. Some rank conditions which relate the image Jacobian and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm Robot manipulator made in Samsung Electronic Co. Ltd.

  • PDF

A NUMERICAL METHOD OF PREDRTERMINED OPTIMAL RESOLUTION FOR A REDUNDANT MANIPULATOR

  • Won, Jong-Hwa;Choi, Byoung-Wook;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1145-1149
    • /
    • 1990
  • This paper proposes a numerical method for redundant manipulators using predetermined optimal resolution. In order to obtain optimal joint trajectories, it is desirable to formulate redundancy resolution as an optimization problem having an integral cost criterion. We predetermine the trajectories of redundant joints in terms of the Nth partial sum of the Fourier series, which lead to the solution in the desirable homotopy class. Then optimal coefficients of the Fourier series, which yield the optimal solution within the predetermined class, are searched by the Powell's method. The proposed method is applied to a 3-link planar manipulator for cyclic tasks in Cartesian space. As the results, we can obtain the optimal solution in the desirable homotopy class without topological liftings of the solution. To show the validity of the proposed method, we analyze both optimal and extremal solutions by the Fast Fourier Transform (FFT) and discuss joint trajectories on the phase plane.

  • PDF

고장에 견디는 공간형 여유자유도 매니퓰래이터의 최적설계에 관한 연구 (Study on Optimal Design of Fault-Tolerant Spatial Redundant Manipulators)

  • 김희국;김동구;이병주
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.97-108
    • /
    • 1996
  • Optimal design of fault-tolerant, spatial type redundant manipulators is treated in this paper. Design objective is to guarantte three degree-of -freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of-freedom manipulators. Noticing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, five different fault-tolerant spatial-type manipulators which have 4 degree-of-freedom structures with one joint redundancy are suggested. Faault-tolerant character-sitics of two redundant manipulators anr investigated based on the analysis of the self-motion and the null-space elements. Finally, in order to maximize the fault-tolerant capability, optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

수중 잠수정-매니퓰레이터 시스템의 복원력 최소화를 위한 여유 자유도 해석 및 강인 제어 (Redundancy Resolution and Robust Control of Underwater Vehicle-Manipulator Systems with Minimizing Restoring Moment)

  • 한종희;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.426-432
    • /
    • 2009
  • In this paper, redundancy resolution of UVMS (underwater vehicle-manipulate. system) is addressed. In general, UVMS has redundant DOFs (degrees of freedom) as many as DOFs of manipulator and these redundant DOFs can be used to optimize the configuration of UVMS while satisfying given tasks. We propose a performance index for redundancy resolution which minimizes the restoring moments of UVMS. The restoring moment can cause unintentional change of poses of UVMS. If the restoring moments remain small, control effort for keeping the poses of UVMS decreases. This means that energy consumption can be reduced by minimizing the restoring moments during conducting tasks. Proposed performance measure is optimized by gradient projection method. Generated trajectories by this redundancy resolution are tracked by robust PID controller. Numerical simulations are presented to demonstrate performance of the proposed algorithm.

A SYUDY ON THE OPTIMAL REDUNDANCY RESOLUTION OF A KINEMATICALLY REDUNDANT MANIPULATOR

  • Choi, Byoung-Wook;Won, Jong-Hwa;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1150-1155
    • /
    • 1990
  • This paper proposes an optimal redundancy resolution of a kinematically redundant manipulator while considering homotopy classes. The necessary condition derived by minimizing an integral cost criterion results in a second-order differential equation. Also boundary conditions as well as the necessary condition are required to uniquely specify the solution. In the case of a cyclic task, we reformulate the periodic boundary value problem as a two point boundary value problem to find an initial joint velocity as many dimensions as the degrees of redundancy for given initial configuration. Initial conditions which provide desirable solutions are obtained by using the basis of the null projection operator. Finally, we show that the method can be used as a topological lifting method of nonhomotopic extremal solutions and also show the optimal solution with considering the manipulator dynamics.

  • PDF

고장에 견디는 공간형 매니퓰레이터의 최적설계 (Optimal Design of Fault-Tolerant Spatial Manipulators)

  • 이병주;김동구;김희국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.605-610
    • /
    • 1994
  • Optimal design of fault-tolerant, spatial type maniplators is treated in this paper. Design objective is to guarantte three degree-of-freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of -freedom manipulators. Realizing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, several 4 degree-of-freedom redundant structures with one joint redundancy are suggested as the fault-tolerant spatial -type manipulators. Fault-tolerant charactersitics are investigated basedon the analysis of the self-motion and the null-space elements, of a redundant manipulator. Finally, in order to maximize the fault-tolerant capability,optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF