• Title/Summary/Keyword: Redundant Manipulators

Search Result 93, Processing Time 0.028 seconds

A Kinematic Control Method for Redundant Robots in Singular Regions (특이 영역에서의 여유 자유도 로보트의 기구학적 제어 방법)

  • 이준수;서일홍;이준홍;오상록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.631-637
    • /
    • 1990
  • It is well-known that the redundancy can be exploited to avoid the singular regions of the redundant manipulators by increasing the manipulability. The method, however, requires excessive energy and gives rather large tracking errors since the manipulability is increased rapidly so that the manipulator avoids the singular region quickly. In this paper, a new method is proposed in which the increasing speed of the manipulability is confined to a certain bound. Therefore, in the proposed method, the movement energy and the tracking errors are reduced. The computer simulation studies are performed to show the validity of the method.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

A Study on the Optimal Control Considering Dynamic Characteristics of Redundant Manipulators (여유자유도 로봇의 동적특성을 고려한 최적 제어에 관한 연구)

  • Lee, Bo-Hyun;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.103-106
    • /
    • 2001
  • A new control method for a redundant manipulator is developed using a local optimal torque and null space joint velocity. By solving the dynamic control equations of the system, the local optimal torque is obtained. If only the local optimal torque is used for controlling the robot there is a possibility that the system is unstable. To eliminate the characteristics of instability during the movements, the control law with a null space concept is used. The new method is applied to the 3-DOF planar manipulator. The simulation results show the effectiveness of the proposed algorithm.

  • PDF

Control of redundant robot manipulators using the time-derivatives of manipulability (조작 성능 지수의 시간 변화율을 고려한 여유 자유도를 갖는 로보트의 제어 방법)

  • 이준수;서일홍;임준홍;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.37-40
    • /
    • 1988
  • It is well-known that the redundancy can be exploited to avoid the singular regions of the redundant manipulator by increasing the manipulability. The method, however, requires exprecessive energy and gives rather large tracking errors since the manipulability is increased repidly so that the manipulator avoid the singular region quickly. In this paper, a new method is proposed in which the increasing speed of the manipulability is confined to a certain bound. Therefore, in the proposed method, the movement energy and the tracking errors are reduced. The computer simulation studies are performed to show the validity of the method.

  • PDF

Path Design of Redundant Flexible Robot Manipulators to Reduce Residual Vibration in the Presence of Obstacles (충돌회피 및 잔류진동 감소를 위한 여유자유도 탄성 로봇 매니퓨레이터 경로설계)

  • Park, K.J.;Chung, K.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • A method is presented for generating the path which significantly reduces residual vibration of the redundant, flexible robot manipulator in the presence of obstacles. The desired path is optimally designed so that the system completes the required move with minimum residual vibration, avoiding obstacles. The dynamic model and optimal path are effectively formulated and computed by using special moving coordinate, called VLCS, to represent the link flexibility. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables. A planar three-link manipualtor is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate path, in the presence of obstacles.

  • PDF

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

Singularity analysis of 6-DOF parallel manipulator with local structurization method (국부구조화 방법을 이용한 6자유도 병렬형 매니퓰레이터의 특이점 해석)

  • Kim, Doik;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1297-1301
    • /
    • 1997
  • Generally, singularity analysis of 6-DOF parallerl manipulators is very difficult and, as result, velocity relation has many uncertainties. In this paper, an alternative method using the local structurizatioin method(LSM) for the analysis of singular configuraions is presented. With LSM, the velocity relation can be represented in a simple form, and the result is totally equivalent to the conventional velocity relation. The velocity relation suggested in this paper gives a closed-form solution of singularities.

  • PDF

Two-Arm Cooperative Assembly Using Force-Guided Control with Adaptive Accommodation (적응 순응성을 갖는 힘-가이드 제어 기법을 이용한 두 팔 로봇 협동 조립작업)

  • Choi, Jong-Dho;Kang, Sung-Chul;Kim, Mun-Sang;Lee, Chong-Won;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 2000
  • In this paper a new two-arm cooperative assembly(or insertion) algorithm is proposed. As a force-guided control method for the cooperative assembly the adaptive accommodation controller is adopted since it does not require any complicated contact state analysis nor depends of the geometrical complexity of the assembly parts. Also the RMRC(resolved motion rate control) method using a relative jacobian is used to solve inverse kinematics for two manipulators. By using the relative jacobian the two cooperative redundant manipulators can be formed as a new single redundant manipulator. Two arms can perform a variety of insertion tasks by using a relative motion between their end effectors. A force/torque sensing model using an approximated penetration depth calculation a, is developed and used to compute a contact force/torque in the graphic assembly simulation . By using the adaptive accommodation controller and the force/torque sensing model both planar and a spatial cooperative assembly tasks have been successfully executed in the graphic simulation. Finally through a cooperative assembly task experiment using a humanoid robot CENTAUR which inserts a spatially bent pin into a hole its feasibility and applicability of the proposed algorithm verified.

  • PDF

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF

Kinematic Control of Redundant Robots in the Constrained Environment and Its Applicaiton to a Nozzle Dam Installation/Detachment Task in Nuclear Power Plants (구속된 환경에서의 여유자유도 로봇의 기구학적 제어와 원자력 발전소 노즐댐 장 /탈착작업에의 적용)

  • Park, Ki-Cheol;Chang, Pyung-Hun;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3871-3882
    • /
    • 1996
  • In this paper, a closed-form formulation for inverse kinematics of robot manipulators with kinematic redundancy under the constrained environment has been derived using the Kuhn-Tucker condition, the extended Lagrange multiplier method and the working set method. The proposed algorithm satisfies the necessaryand sufficient conditions for optimization subject to equality and inequality constraints. In addition, computationally efficient kinematic control methods have been proposed using differential kinemetics and gradient projection mehtod. The effectiveness of the proposed methods has been demonstrated with a 4-dof planar robot, and then a 7-dof spatial robot as a practical application to the nozzle dam task in the Nuclear Power Plant.