• Title/Summary/Keyword: Redundancy and reliability

Search Result 219, Processing Time 0.027 seconds

Alternative Analysis of Reliability Design using Redundancy Technique (리던던시 기법을 활용한 신뢰성 설계 대안 분석)

  • Seo, Yang Woo;Lim, Jae Hoon;Yoon, Jung Hwan;Nam, Hyun Woo;Woo, Yeon Jeong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this paper we proposed the alternative analysis of reliability design using redundancy technique. First, we presented the process for establishing the reliability design alternative analysis process considering the active redundancy and the standby redundancy. and then, the case analysis of A driving equipment was performed in accordance with the reliability design alternative analysis process presented. In case the series reliability design result is not met with the reliability target value. so, the target item for redundancy design of A driving equipment were selected as items with a severity of two or higher. The redundancy design applied with active and standby redundancy techniques were analyzed using BlockSim software. As a result, it was analyzed that reliability design to active redundancy with one of two elements required for A driving equipment is the most efficient compared to the target value of reliability. The results of this study can be usefully used before the reliability design is performed.

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

Reliability Paradigm-Changes in Industry 4.0 (4차 산업혁명 시대에서의 신뢰성 패러다임의 변화)

  • Jeong, Hai Sung
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.289-295
    • /
    • 2017
  • Purpose: This paper will focus on the reliability technological innovation following the emergence of industry 4.0 featured by convergence, connection and complexity. In the course of the process, the concept and application of 3R (Robustness, Redundancy, Resilience) are considered along with reliability in industry 4.0. Methods: Reliability paradigm-changes are presented to meet the purpose of keeping the desired function in Industry 4.0. And the introduction of resilience, a concept compromising reliability is to be suggested. Results: The necessity of the 3R (Robustness, Redundancy, Resilience) introduction is emphasized according to reliability paradigm-changes. Conclusion: Reliability, robustness, redundancy and resilience are not mutually exclusive. Ultimately, acquiring the resilience requires robustness, redundancy and fittable maintenance procedures.

A k-out-of-n System Reliability Optimization Problem with Mixed Redundancy (혼합 중복 k-out-of-n 시스템 신뢰도 최적화 문제)

  • Baek, Seungwon;Jeon, Geonwook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.90-98
    • /
    • 2013
  • The k-out-of-n system with mixed redundancy is defined as k-out-of-n system which both includes warm-standby and cold-standby components. In case that operating components in the system fail and the system needs quick transition of standby components to operation state, the k-out-of-n system with mixed redundancy is useful for decreasing system failure rate and operational cost. Reliability-Redundancy Optimization Problem (RROP) involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. A solution methodology by using harmony search algorithm for RROP of the k-out-of-n system with mixed redundancy to maximize system reliability was suggested in this study.

Reliability Analysis of a System with Redundancy Management Based on Monte-Carlo Probability Model (다중구조관리자 특성이 반영된 확률모델 기반의 몬테카를로 신뢰도 해석 기법 연구)

  • Kim, Sung-Su;Park, Sang-Hyuk;Kim, Sung-Hwan;Choi, Kee-Young;Park, Choon-Bae;Ha, Cheol-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1132-1137
    • /
    • 2011
  • Critical systems with high reliability feature fault tolerant redundancy. Conventional analytical reliability analysis methods that use the Reliability Block Diagram do not adequately reflect characteristics of the redundancy management system and are not suitable for this applications. This paper uses Monte-Carlo method to calculate the reliability of complicated redundant systems. The method was first validated for cases with analytical solutions. Then, the tool was successfully applied to analyze reliability of the flight control systems with a voter as redundancy management system.

A Reliability Optimization Problem of System with Mixed Redundancy Strategies (혼합 중복전략을 고려한 시스템 신뢰도 최적화 문제)

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.153-162
    • /
    • 2012
  • The reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure and it has been considered as one of the major design parameters in the field of industries. Reliability-Redundancy Optimization Problem(RROP) involves selec tion of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. However, in practice both active and cold standby redundancies may be used within a particular system design. Therefore, a redundancy strategy(active, cold standby) for each subsystem in order to maximize system reliability is considered in this study. Due to the nature of RROP, i.e. NP-hard problem, A Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve the mathematical programming model and it gives consistently better quality solutions than existing studies for benchmark problems.

Redundancy of Dual and Steel Moment Frame Systems under Earthquakes

  • Song, S.H.;Wen, Y.K.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.137-137
    • /
    • 2001
  • The reliability/redundancy of structural system has become a serious concern among engineers and researchers after structural failures in Northridge and Kobe earthquakes. The reliability/redundancy factor, ρ, in current codes considers only member force and floor area and has received much criticism from dissatisfied engineers. Within a reliability framework. the redundancy is investigated for dual systems of primary shear walls and secondary moment frames and steel moment frame systems. Probabilistic performance analyses are carried out baled on nonlinear responses under SAC ground motion. The effects of structural configuration, ductilily capacity, 3-D motion, and uncertainty of demand verses capacity are investigated. Important redundancy-contributing factors are identified and a uniform-risk redundancy factor is developed for design. The result are compared with the p factor and its inconsistency is pointed out.

  • PDF

Optimum redundancy design for maximum system reliability: A genetic algorithm approach (최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근)

  • Kim Jae Yun;Shin Kyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

Redundancy Optimization for the Mixed Reliability System

  • Sok, Yong-U
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.143-158
    • /
    • 2000
  • This paper deals with the problem of redundancy allocation for the mixed reliability system in an optimal way. Two kinds of the reliability system are considered for optimal allocation of parallel redundancy. The problem is approached as the optimization problems using th standard method of dynamic programming(DP). The algorithm for solving the optimal redundancy allocation is proposed and then the DP algorithm is applied to two numerical examples such as maximization of reliability subject to an allowable cost-constraint and minimization of the total cost subject to the specified minimum reliability-constraint. A consequence of this study is that the developed computer program package can be applied to the optimal redundancy allocation for the mixed reliability system.

  • PDF

SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH (체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가)

  • 조효남;이승재;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF