• Title/Summary/Keyword: Reductive

Search Result 472, Processing Time 0.026 seconds

Preparation of Ag Nano-Powder from Aqueous Silver Solution through Reductive Precipitation Method (환원침전법을 이용한 수용액으로부터 은 나노분말의 제조 연구)

  • Lee Hwa-Yaung;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.21-27
    • /
    • 2005
  • As one of the hydrometallurgical processes available in the recycling of silver-bearing wastes, the preparation of Ag nano-powder was investigated by a reductive precipitation reaction in silver solution using sodium formaldehydesulfoxylate and ascorbic acid as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and Tamol NN8906, PVP, SDS and caprylic acid were also used respectively as the dispersant to avoid the agglomeration of particles during the reductive reaction. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about $40\%$ excess of sodium formaldehydesulfoxylate was required to reduce completely silver ions in the solution. It alto appeared that the particle size generated with sodium formaldehydesulfoxylate was much greater than that with ascorbic acid. As far as the effect of dispersant on the Ag particles was concerned, the particle size distribution showed typically bimodal distribution in case of Tamol/FVP while very broad distribution ranged from 0.01 to $100{\mu}m$ appeared in case of SDS/caprylic acid.

Evaluation of Microbial PCE Reductive Dechlorination Activity and Microbial Community Structure using PCE-Contaminated Groundwater in Korea (사염화에틸렌(PCE)으로 오염된 국내 4개 지역 지하수 내 생물학적 PCE 탈염소화 활성 및 미생물 군집의 비교)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kwon Soo-Yeol;Kim Jung-Kwan;Lee Han-Woong;Ha Joon-Soo;Park Hoo-Won;Ahn Young-Ho;Lee Jin-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • In Korea, little attention has been paid to microbial perchloroethylene (PCE) and/or trichloroethylene (TCE) dechlorination activity and identification of microorganisms involved in PCE reductive dechlorination at a PCE-contaminated aquifer. We performed microcosm tests using the groundwater samples from 4 different contaminated sites (i.e. Changwon A, Changwon B, Bucheon and Yangsan) to assess PCE reductive dechlorination activity. We also adapted molecular techniques to screen what types of known reductive dechlorinators are present at the PCE-contaminated aquifers. In the Changwon A and Changwon B active microcosms where potential electron donors such as sodium propionate, sodium lactate, sodium butyrate, and sodium fumarate, were added, ethylene, an end-product of complete reductive dechlorination of PCE, was detected after a period of 90 days of incubation. In the Bucheon and Yangsan active microcosms, cis-1,2-dichloroethylene (c-DCE) was accumulated without the production of vinyl chloride (VC) and ethylene. Molecular techniques were used to evaluate the microbial community structures in the Changwon B and Yangsan aquifer. We found two sequence types that were closely related to a known PCE to ethylene dechlorinator, named uncultured bacterium clone DCE47, in the Changwon B site clone library. However, in the Yangsan site clone library, no sequence type was closely related to known PCE dechlorinators reported. It is plausible that microorganisms being capable of completely dechlorinating PCE to ethylene may be present in the Changwon B site aquifer. In this study we find that complete PCE reductive dechlorinators are present at some PCE-contaminated sites in Korea. In an engineering point of view this information makes it feasible to apply a biological reductive dechlorination process for remediating PCE- and/or TCE-contaminated aquifers in Korea.

Absent Pulmonary Valve with Intact Ventricular Septum, PDA. ASD (온전한 심실중격을 가진 폐동맥판막무형성증, 동맥관개존, 심방중격결손의 수술치험 1례)

  • 유지훈;박계현;이영탁;박표원;전태국
    • Journal of Chest Surgery
    • /
    • v.35 no.8
    • /
    • pp.590-593
    • /
    • 2002
  • Absent pulmonary valve syndrome with intact ventricular septum(APVS with IVS) is a rare congenital anomaly. The severe form of this syndrome, characterized by severe respiratory distress presented soon after birth, has been attributed to the compression of the airways caused by aneurysmal dilatation of pulmonary artery. Several operative treatments such as pulmonary valve insertion, or reductive angioplasty of pulmonary artery have been applied. We present a 3-day-old male who showed improvement after PDA ligation, reductive angioplasty of pulmonary artery, pulmonary valve reconstruction, and ASD closure.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Stripping of Fe(III) from the Loaded Mixture of D2EHPA and TBP with Sulfuric Acid Containing Reducing Agents

  • Liu, Yang;Nam, Sang-Ho;Lee, Manseung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2109-2113
    • /
    • 2014
  • Solvent extraction of Fe(III) from chloride solution by using a mixture of D2EHPA (Di-(2-ethylhexyl)-phosphoric acid) and TBP (Tri-butyl phosphate) and the reductive stripping of Fe(III) from the loaded organic were investigated. Quantitative extraction of Fe(III) from the solution (Fe concentration = 90 g/L) was accomplished in two cross-current extraction stages by using the mixture of D2EHPA and TBP. In order to facilitate the stripping efficiency, a reductive stripping method was employed by using $H_2SO_3$ or $Na_2SO_3$ as a reducing agent. The addition of $H_2SO_4$ into reducing agents led to improvement in the stripping efficiency while high concentration acid would suppress it. Both of the mixtures of $H_2SO_4+H_2SO_3$ and $H_2SO_4+Na_2SO_3$ showed good efficiency for the stripping of Fe(III), while the latter was recommended as the stripping solution based on the economics and experimental condition.

Reductive Depolymerization of Bovine Thyroglobulin Multimers via Enzymatic Reduction of Protein Disulfide and Glutathiony­lated Mixed Disulfide Linkages

  • Liu Xi-Wen;Sok Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1065-1072
    • /
    • 2005
  • The nascent thyroglobulin (Tg) multimer molecule, which is generated during the initial fate of Tg in ER, undergoes the rapid reductive depolymerization. In an attempt to determine the depolymerization process, various types of Tg multimers, which were generated from deoxy­cholate-treated/reduced Tg, partially unfolded Tg or partially unfolded/reduced Tg, were subjected to various GSH (reduced glutathione) reducing systems using protein disulfide isomerase (PDI), glutathione reductase (GR), glutaredoxin or thioredoxin reductase. The Tg multimers generated from deoxycholate-treated/reduced Tg were depolymerized readily by the PDI/GSH system, which is consistent with the reductase activity of PDI. The PDI/GSH-induced depolymerization of the Tg multimers, which were generated from either partially unfolded Tg or partially unfolded/reduced Tg, required the simultaneous inclusion of glutathione reductase, which is capable of reducing glutathionylated mixed disulfide (PSSG). This suggests that PSSG was generated during the Tg multimerization stage or its depolymerization stage. In particular, the thioredoxin/thioredoxin reductase system or glutaredoxin system was also effective in depolymerizing the Tg multimers generated from the unfolded Tg. Overall, under the net GSH condition, the depolymerization of Tg multimers might be mediated by PDI, which is assisted by other reductive enzymes, and the mechanism for depolymerizing the Tg multimers differs according to the type of Tg multimer containing different degrees and types of disulfide linkages.

Inhibitory Effects of Super Reductive Water on Plant Pathogenic Fungi

  • Hur, Jae-Seoun;Kim, Hae-Jin;Oh, Soon-Ok;Koh, Young-Jin;Kwak, Young-Se;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.284-287
    • /
    • 2002
  • The antifungal activity of super reductive water (SRW) against plant pathogenic fungi was examined to extend its application to integrated pest management (IPM) for plant diseases. Diluted solutions ($\times$1/10, $\times$1/25, and $\times$1/50) of SRW inhibited fungal growth of kiwifruit soft rot pathogen, Diaporthe actinidiae, in a concentration dependent manner, When kiwifruits were inoculated on wounds with mycelium blocks, stock and diluted solutions successfully inhibited the disease development. In addition to the high pH of the SRW, fungistatic activity was also considered as the cause of the antifungal effect against the pathogen. Whereas conidial germination of Magnaporthe grisea was not affected by the diluted SRW solutions, appressorium formation was significantly inhibited in a concentration dependent manner, With little harmfulness to human health and environment SRW could be used to control plant pathogenic fungi, particularly appressorium-forming fungal pathogens.

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim;Jang, Min-Soo;Song, Young-Jin;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

Synthesis of Azobenzene Derivatives via Controlled Potential Cathodic Electrolysis (조절전위법 음전극 유기반응을 이용한 아조벤젠 유도체들의 합성)

  • Kim Byeong Hyo;Choi Yong Rack;Kim Dae Ho;Han Rongbi;Baik Woonphil;Jun Young Moo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.209-212
    • /
    • 1999
  • Using an H-type divided cell, reductive coupling reaction of nitroarene toward azobenzenes in a mild condition was successfully accomplished by the controlled potential cathodic electrolysis reaction. Optimum reaction potential of each reaction was determined based on cyclic voltammetric behavior in methanol solution at Pb or Pt cathode, and Pt anode. In most cases, reductive coupling reactions were successful with excellent yields regardless of the position and the character of the substituents.

Anaerobic Degradation of Aromatic Compounds by Microorganisms in Paddy Field

  • Katayama, A.;Yoshida, N.;Shibata, A.;Baba, D.;Yang, S.;Li, Z.;Kim, H.;Zhang, C.;Suzuki, D.
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.128-135
    • /
    • 2011
  • Consortia demonstrated the high capacities of anaerobic degradation of various aromatic compounds, which were successfully enriched from gley paddy soils under different conditions. Phenol and cresol was decomposed anaerobically using nitrate, ferric oxide or sulfate as electron acceptors. Biphenyl was degraded to $CO_2$, especially without addition of external electron acceptor. Alkylphenols with middle length of alkyl chain, were co-metaboliocally degraded with the presence of hydroxylbenzoate as the co-substrate under nitrate reducing conditions. The microorganisms responsible for the anaerobic co-metabolism was Thauera sp. Reductive dechlorination activity was also observed for polychlorophenols, fthalide, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins with the presence of lactate, formate or $H_2$ as electron donor. The fthalide dechlorinator was classified as Dehalobacter sp. Coupling of two physiologically-distinct anaerobic consortia, aromatic ring degrader and reductive dechlorinator, resulted in the mineralization of pentachlorophenol under anaerobic conditions. These results suggested that gley paddy soils harbored anaerobic microbial community with versatile capacity degrading aromatic compounds under anaerobic conditions.

  • PDF