• Title/Summary/Keyword: Reduction of Wall Thickness

Search Result 134, Processing Time 0.024 seconds

A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구)

  • Kim K. H.;Hwang K. M.;Jin T. E.
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

Numerical Study of the Butting Process for a AZ31B Magnesium Alloy Tube (마그네슘 합금(AZ31B) 버티드 튜브 성형 공정 해석)

  • Han, S.S.;Lee, M.Y.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.486-491
    • /
    • 2013
  • A numerical investigation of the butting process for an AZ31B magnesium alloy tube at elevated temperatures was conducted to develop a double-butted magnesium alloy tube. As a result of the current study, it was found that the amount of doming of the tube end, prior ironing-extrusion to obtain high wall thickness reduction are important factors for the butting process of magnesium alloy tubes. There is also a limitation of the thickness profile of butted tube due to buckling of tube wall during the stripping stage.

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Song, Kyung-Suk;Kim, Bo-Kyoum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF

Noise and Vibration Characteristics of Construction structures in Standard Laboratory (표준실험동의 구조별 소음 진동 특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.

Effects of Droplet Temperature on Heat Transfer During Collision on a Heated Wall Above the Leidenfrost Temperature (Leidenfrost 온도 이상의 가열 벽면과 충돌 시 열전달에 대한 액적 온도의 영향)

  • Park, Junseok;Kim, Hyungdae
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.78-87
    • /
    • 2016
  • This study experimentally investigated the effects of droplet temperature on the heat transfer characteristics during collision of a single droplet on a heated wall above the Leidenfrost temperature. Experiments were performed by varying temperature from 40 to $100^{\circ}C$ while the collision velocity and wall temperature were maintained constant at 0.7 m/s at $500^{\circ}C$, respectively. Evolution of temperature distribution at the droplet-wall interface as well as collision dynamics of the droplet were simultaneously recorded using synchronized high-speed video and infrared cameras. The local heat flux distribution at the collision surface was deduced using the measured temperature distribution data. Various physical parameters, including residence time, local heat flux distribution, heat transfer rate, heat transfer effectiveness and vapor film thickness, were measured from the visualization data. The results showed that increase in droplet temperature reduces the residence time and increases the vapor film thickness. This ultimately results in reduction in the total heat transfer by conduction through the vapor film during droplet-wall collision.

Evaluation of Floor Impact Sound Performance according to the installation of Ceiling and Wall (천장 및 벽구성 방법에 따른 바닥충격음 특성평가)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.261-264
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the installation of ceiling and wall. In this test, we measured the reduction of impact sound in the case of inserting absorption materials, increasing of the thickness of air layer and using anti-vibration rubber in ceiling, install of absorption materials in wall. The results of this study show that treatment of ceiling and wall have some reduction of the light weight impact sound and heavy weight impact sound.

  • PDF

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.