• Title/Summary/Keyword: Reduction of Interior Noise

Search Result 135, Processing Time 0.037 seconds

The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel (주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구)

  • Kim, Byung-Jin;Sa, Jung-Hwan;Park, Jin-Sung;Park, Hyun-Woo;Cho, Seong-Keun;Jeong, Heon Sul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Nowadays, among several reasons for customers to choose their own cars, NVH performance plays much important role. The concern for the car interior noise is increasing recently, because electric cars and hybrid cars generate less engine noise which was the main noise of traditional cars. According to oversea references, high Lateral Dynamic Stiffness (LDS) of vehicle wheels is described to reduce Structure Bone Noise (SBN) which is being generated while driving cars. However availablet test standards and test results are not enough, in this study the interior noise has been measured after attaching a same tyre to several wheels which has different Lateral Dynamic Stiffness. The test has verified that the interior noise differs depending on Lateral Dynamic Stiffness of wheels. As to this, the reduction of the interior noise can be possible with the optimal design of the wheel.

Interior Noise Reduction of Wheel Loader Using Transfer Path Analysis and Panel Contribution Analysis (전달 경로 분석과 패널 기여도 분석을 이용한 휠로더의 실내소음 저감에 관한 연구)

  • Kim, Bo-Yong;Shin, Chang-Woo;Jeong, Won-Tae;Park, Sung-Yong;Jang, Han-Kee;Kim, Seong-Jae;Kang, Yeong-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.805-815
    • /
    • 2008
  • Transfer path analysis(TPA) and panel contribution analysis(PCA) have been used widely to reduce interior noise of mechanical systems. TPA enables us to decompose interior noise into air-borne and structure-borne noises and estimate the path contribution of noise sources. PCA is also used to identify the noise contribution of each sub-panel in vibro-acoustic systems. In this paper, TPA and PCA are applied to wheel loader, one of the heavy construction equipments. Firstly, TPA for air-borne noise is conducted to estimate the contribution of air-borne sources using pressure transfer function. Thereafter, TPA for structure -borne noise is employed to verify the results of air-borne source quantification through the synthesis of two results. Secondly, PCA is performed by both TPA using pressure transfer function between panels inside the cabin and boundry element method(BEM) for the cabin of wheel loader with various boundary conditions. As a results, it was found that TPA conducted by experiments and PCA accomplished by both experiments and BEM are very effective methods in analyzing the path and contribution of the noises for reducing an interior noise level in the wheel loader system.

A Study on the Noise Reduction of Compartment of Vehicle Using Sensitivity Analysis of Engine Exciting Force (엔진 가진력의 감도해석을 이용한 차실 소음 저감에 관한 연구)

  • 오재응;김태욱;송재은;이해승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 1997
  • Vehicle interior noise has become increasingly important in this recent years. The noise of a vehicle is one of the important problems in a vehicle design. The interior noise is caused by various vibration sources of vehicle compartment. The booming noise of a vehicle can be significantly affected by vibrations transmitted from engine excitation forces to the vehicle body. Specially, we are interested in the state of transmission paths such as engine mounts to reduce noise in a vehicle compartment. In this paper, we have been calculated the contribution of each transmission path such as engine mounts to interior noise. To identify contribution of each input sources and transmission paths to output, the effectiveness of each input component to output is calculated. Sensitivity analysis is carried out for investigation of contribution to output due to input variations. With the simulation of magnitude and phase change of inputs using vector synthesis diagram, the trends of synthesized output vector are obtained. As a result, we suggested sensitivity analysis of vector synthesis as a technique of prediction and control for noise in a vehicle compartment.

  • PDF

The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft (밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석)

  • Choi, Cheon;Suh, Myung-Won;Kim, Young-Gin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

The Study on the sound reduction of Intake System using Active Control Method (능동제어기법을 이용한 흡기계의 소음 저감에 관한 연구)

  • 이충휘;홍진석;오재응;김영식;박동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.165-168
    • /
    • 2000
  • Engine noise is one of the major causes of the interior noise, and so has been studied in various ways in recent days. Recently air induction noise has been extensively studied to reduce the engine noise. Conventional method to reduce the noise is adding several resonators to the induction system. However this causes a reduction of engine output power and an increase of fuel consumption. Thus in this study, the feasibility of applying the active noise control to the induction system is studied to the overcome the above disadvantage.

  • PDF

Test of Low Noise Wheels to Reduce the Subway Noise (지하철 소음 저감을 위한 방음차륜 적용시험)

  • 유원희;김재철;한기흥;문경호
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.487-494
    • /
    • 1999
  • The object of this study is to reduce the subway noise by the low noise wheel. The vibro-acoustic reduction was predicted from the FRF difference between low noise wheel and solid wheel by experimental modal analysis. The low noise wheel and solid wheel were compared in viewpoint of car interior/exterior noise. The effect of low noise wheel on the noise of subway train of 6 vehicles was obtained. But, the application of low noise wheel must be reviewed in some aspect.

  • PDF

Social Inter-Floor Noiseproof Measures According to Experiences of Conflict in Multi-Family Housing (공동주택 거주자의 층간소음 갈등 경험에 따른 사회적 해결방안)

  • Ha, Jimin;Lee, Taekyung;Shin, Eungyeong
    • Journal of the Korean housing association
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2015
  • This study aims to develop a solution to inter-floor noise complaints by exploring cases of noise complaints between floors and by identifying the demands and needs of the residents. For this purpose, a survey was conducted targeting residents who were sorted into groups depending on their experiences with inter-floor noise. This survey was carried out from June 11, 2014 to June 16, 2014. A total of 100 copies of the questionnaire was distributed to the residents, of which 98 were completed and collected. Data were statistically processed in accordance with SPSS WIN 18.0. The results showed that the leading causes of inter-floor noise complaints were residents' differences in schedules and their inconsideration in behavior. Thus, the solution to this issue is three-fold: first, to take social measures in order to improve communication and understanding between residents so they can be mindful of their noise levels; second, to reinforce noise control regulation; and third, to improve noise reduction design within the building architecture.

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF