• Title/Summary/Keyword: Reductant

Search Result 188, Processing Time 0.038 seconds

Thermal decomposition of urea solution at low temperature in a lab-scaled exhaust pipe (실험실 규모 배기관에서 요소수의 저온 열분해)

  • Ku, Kunwoo;Park, Hongmin;Park, Hyungsun;Kim, Taehun;Hong, Junggoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.235-236
    • /
    • 2014
  • An experimental study has been carried out to investigate a thermal decomposition of urea solution at relative low temperature with a lab-scaled exhaust pipe. The conversion efficiency of reductant considered with both ammonia and HNCO related with the urea injection quantity, inflow gas velocity and temperature. The conversion efficiency of ammonia was larger than that of HNCO under all experimental conditions unlike the theoretical thermolysis reaction.

  • PDF

Kinetics of Hydrogen Rich Ethanol as Reductant for HC-SCR over $Al_2O_3$ Supported Ag Catalyst (Ag/$Al_2O_3$ 촉매하의 HC-SCR에서 수소 풍부 에탄올의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.519-525
    • /
    • 2010
  • Ethanol was used as reductant to remove $NO_x$ over Ag/$Al_2O_3$ catalyst via SCR from stationary emission source. Among the tested hydrocarbon reductants, ethanol showed highest de-$NO_x$ performance over the Ag/$Al_2O_3$ catalyst. De-$NO_x$ efficiency of about 83% was obtained in the condition of GHSV 20,000 $hr^{-1}$, $NO_x$ 200 ppm, CO 200 ppm, $O_2$ 13%, $H_2O$ 5% and mole ratio of ethanol/$NO_x$ = 2 between temperature of $300^{\circ}C$ and $400^{\circ}C$. While $SO_2$ presence in the $NO_x$ exhaust suppressed the catalytic activity, catalyst with acid (0.7% $H_2SO_4$) treatment of catalyst showed higher catalytic activity, where In-Situ DRIFT showed S presence over catalyst surface was increased after acid treatment of catalyst. From in-situ DRIFT and SCR results, it was concluded that sulfur presence over the surface of Ag/$Al_2O_3$ catalyst was the dominant factor to control the de-$NO_x$ reaction yield via HC-SCR from the exhausted gas including $SO_2$.

Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide (그래핀 옥사이드의 환원 반응에 적용되는 3종류 환원제에 관한 비교 연구)

  • Park, No Il;Park, Wan-Su;Lee, Seul Bi;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.99-103
    • /
    • 2015
  • We conducted reduction reactions of graphene oxide (GO) using three selected reductants. The conductivity and solubility of three kinds of the reduced graphene oxides (RGOs) were examined based on the degree of reduction. When the ethylene glycol (EG) was used as a reductant, the reduction reaction did not sufficiently progress and as a result the conductivity of RGOs was observed to be relatively low. For RGOs made by hydrazine (HZ) and thiourea dioxide (TU), we observed no significant differences in the degree of the reduction, conductivity and dispersity in water. However, RGO prepared by TU showed an exceptionally good solubility in N-methylpyrrolidone, and the solution was stable for more than 4 months.

Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method (무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조)

  • Yoon, C.H.;Ahn, J.G.;Kim, D.J.;Sohn, J.S.;Park, J.S.;Ahn, Y.G.
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

A Study on the Heavy Metal Content of Permanent Wave Products (퍼머넌트 웨이브제의 중금속 함량에 관한 연구)

  • Yoo, Tai-Soon;Jang, Nam-Soon;Jung, Yeon
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.2 s.2
    • /
    • pp.93-100
    • /
    • 2004
  • This study is to measure the heavy metal content of permanent wave products which on marketing correctly as estimating the extent of exposure by a hair permanent wave scientifically. We would like to prevent an affair from arising health obstruction as to the heavy metal who is using those and also show the basic data for proposing the new standard. The results were as follows.: in case of the average heavy metal content for a wave type thioglycol acid ingredient includes 1.61ppm(Pb), 0.03ppm(Cd), 0.05ppm(Ni), 0.27ppm(Mn), 0.82ppm(Cu) and those were recognized the significant gap between products all the heavy metals. In case of a cysteine acid ingredient includes 0.86ppm(Pb), 0.01ppm(Cd), 0.05ppm(Ni), 0.20ppm(Mn) and 0.66ppm(Cu) and those were recognized the significant gap between products except a nickel. Straight type of permanent wave reductant includes 2.11ppm(Pb), 0.01ppm(Cd), 0.27ppm(Ni), 0.66ppm(Mn), 2.53ppm(Cu) and those were recognized the significant gap between products all the heavy metals. Permanent wave reducing agent includes 1.43ppm(Pb), 0.01ppm(Cd), 0.09ppm(Ni), 0.66ppm(Mn), 0.75ppm(Cu) and those were approved the significant gap between products except a cadmium. Exposure level of the heavy metal contents per onetime permanent waving were 242.3ppm(Pb), 2.5ppm(Cd), 17.7ppm(Ni), 89.0ppm(Mn), 174.7ppm(Cu).

  • PDF

A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구)

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution

  • Xue, Jianrong;Zhong, Hong;Wang, Shuai;Li, Changxin;Li, Jinzhong;Wu, Fangfang
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.509-516
    • /
    • 2015
  • We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of $63{\mu}m$, $1.7mol{\cdot}L^{-1}\;H_2SO_4$, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of $400r{\cdot}min^{-1}$. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is $17.81kJ{\cdot}mol^{-1}$. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.

An Experimental Study on Optimization of $NH_3$ Injection for the Selective Catalytic Reduction(SCR) System (선택적 환원 촉매(SCR)에서 암모니아($NH_3$) 분사량 최적화에 대한 실험적 연구)

  • Jang, Ik-Kyoo;Yoon, Yu-Bin;Park, Young-Joon;Lee, Seang-Wock;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2874-2879
    • /
    • 2008
  • The Selective catalytic reduction(SCR) system is a highly-effective device of $NO_x$ reduction for diesel engines. Generally, the ammonia($NH_3$) generated from a liquid urea-water solution is used for the reductant. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency becomes lower, due to temperature window. And space velocity also affects to $NO_x$ conversion efficiency. This paper reviews a laboratory study to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the SCR system. The maximum conversion efficiency of $NO_x$ was indicated when the $NH_3$ to $NO_x$ ratio was 1.2 and the space velocity was $60,000\;h^{-1}$. The results of this paper contribute to improve overall $NO_x$ reduction efficiency and $NH_3$ slip.

  • PDF