• Title/Summary/Keyword: Reduced slag

Search Result 174, Processing Time 0.034 seconds

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete (초고강도 콘크리트의 수축 균열 특성 및 구속도 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • The concrete cracking from the restrained stress caused by the shrinkage may play significant cause of deterioration of concrete structures by allowing the permeation of sulphate and chloride ions which in turn triggers corrosion of steel reinforcement. In particular, the cracking becomes more critical as water binder ratio (W/B) is reduced and concrete strength increases. Therefore, it needs to evaluate correctly the comprehensive shrinkage behavior of concrete with high strength: high-strength concrete (HSC), ultra-highstrength concrete (UHSC). The unrestrained shrinkage tests, however, cannot estimate the net shrinkage effectively which affects cracking after full development of strength and stiffness because it does not consider the degree of restraint, strength development, stress relaxation, and so on. Therefore, in this study, both free and restrained shrinkage tests with variables of W/B (W/B of 30, 25 and 16%) and admixtures (fly ash (FA) and granulated blast-furnace slag (BFS)) for HSC, very-high-strength concrete (VHSC) and UHSC were performed. The test results indicated that the autogenous shrinkage and total shrinkage at drying condition were reduced as W/B increased and FA, BFS were added, and the cracking behavior was suppressed as W/B increased and FA was added.

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Effect of Initial Flexural Crack on Resistance to Chloride Penetration into Reinforced Concrete Members (초기 휨균열이 철근콘크리트 부재의 염화물침투저항성에 미치는 영향)

  • Yang, Eun Ik;Jin, Sang Ho;Kim, Myung Yu;Choi, Yoon Suk;Han, Sang Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • In this study, the chloride penetration tests were performed for the initially cracked reinforced concrete members. The chloride diffusion characteristics and the critical crack width are compared, and the properties of self-healing are investigated. According to the test results, the chloride penetration resistance was greatly reduced as the surface crack width increased. When the mineral admixtures are added, the chloride penetration resistance of uncracked specimens were effectively increased, however, in case of the blast furnace slag and fly ash, the cracked specimens showed the more reduced resistance than OPC case, inversely. Also, the critical width was $29{\mu}m$, on average, for immersion test. The crack width with $4{\sim}15{\mu}m$ was restored by self-healing, The parts restored by self-healing were seemed to be visually restored, however, the chloride penetration resistance was not restored, perfectly.

The Selection of Optimal Mixing Proportion and Cost Analysis in the SFC (초유동 콘크리트의 최적배합 선정방법 및 경제성 분석)

  • Park, Chil-Lim;Kim, Moo-Han;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.262-268
    • /
    • 1998
  • This research is to examine the selected method of optimal mixing proportion and cost analysis in the super flowing concrete. As confined water $ratio($\beta_p$)$ and K is introduced, itis to establish optimal mixing design of super flowing concrete according to the steps of paste, mortar and concrete. From paste and mortar test, it was led to $$\beta_p$$ and $K_p$satisfying the optimum condions depending on the kinds of binders. Then $$\beta_p$$ and $K_p$ is reflected to the mix condition of super flowing concrete. The result of test, the mix condition of super flowing concrete satisfied the quality performance of concrete with adjustment of additional rate of the superplasticizer. Besides, in case of design strength $350kg/\textrm{cm}^2$ of concrete, material cost in super flowing concrete is able to be reduced 5~16% in replacement of fly ash 30% in ordinary portland cement and slag cement.

  • PDF

The Length Change Characteristic of the Ternary System Inorganic Composites adding the Waste Gypsum Board Micro Powder containing SO3 the great quantity (SO3를 다량 함유한 폐석고보드 미분말을 첨가한 3성분계 무기결합재의 길이변화 특성)

  • Kim, Yun-Mi;Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.65-66
    • /
    • 2012
  • The cement used in the construction industry of the manufacturing process, large amounts of the greenhouse gas, CO2 and is currently being studied for cement substitutes that reduce greenhouse gas issue. Therefore, the this study as a replacement for cement industrial by-product of blast furnace slag, red mud, silica fume and alkali-activator, using only inorganic composites without high-temperature calcination process were manufactured. The waste gypsum board micro powder added to compensate for the shrinkage cracks, the compressive strength and flow, and length change characteristics were investigated. Consequently, The setting time was shortened as GB added And liquidity was reduced. GB 2%, 7 days curing the added strength of specimens was the highest. Came out, and change the length of the Plain least.

  • PDF

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Effects of loading conditions and cold joint on service life against chloride ingress

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.319-326
    • /
    • 2018
  • RC (Reinforced Concrete) members are always subjected to loading conditions and have construction joints when constructed on a big scale. Service life for RC structure exposed to chloride attack is usually estimated through chloride diffusion test in sound concrete, however the test is performed without consideration of effect of loading and joint. In the present work, chloride diffusion coefficient is measured in concrete cured for 1 year. In order to evaluate the effect of applied load, cold joint, and mineral admixtures, OPC (Ordinary Portland Cement) and 40%-replaced GGBFS (Ground Granulated Blast Furnace Slag) concrete are prepared. The diffusion test is performed under loading conditions for concrete containing cold joint. Investigating the previous test results for 91 days-cured condition and the present work, changing diffusion coefficients with applied stress are normalized considering material type and cold joint. For evaluation of service life in RC continuous beam with 2 spans, non-linear analytical model is adopted, and service life in each location is evaluated considering the effects of applied stress, cold joint, and GGBFS. From the work, varying service life is simulated under various loading conditions, and the reduced results due to cold joint and tensile zone are quantitatively evaluated. The effect of various conditions on diffusion can provide more quantitative evaluation of chloride behavior and the related service life.