• Title/Summary/Keyword: Reduced scale experiment

Search Result 191, Processing Time 0.026 seconds

Thermal Characteristics of Under Ventilated Compartment Fire (환기부족 구획화재의 열적 특성)

  • Kim, Sung-Chan;Hamins, Anthony
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • The present study has been performed to investigate the thermal characteristics of under-ventilated compartment fire which is a typical fire condition in structures. A series of fire experiments was conducted to characterize the thermally driven flow in a 2/5 scale ISO 9705 fire compartment. Three different fuels were used in this test series, methane gas, heptane pool, and polystyrene pellets fire. In order to measure accurate temperature, double shield aspirated thermocouples reducing the effect of radiative energy exchange on temperature measurement were used in addition to bare bead thermocouples. The upper layer temperature for well ventilated fire was increased with increasing heat release rate, but it was slightly decreased for under-ventilated fire. The measured temperatures in the upper layer at the front sampling location were higher than at the rear. Thermal characteristics through the doorway were also analysed for a wide range of heat release rates. This study provides a comprehensive and quantitative assessment of fire behavior for under-ventilation condition of fire.

Shipboard sewage treatment by SBR process with BM (BM 미생물제제를 이용한 크루즈선 오·폐수 처리)

  • Lee, Eon-Sung;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.817-822
    • /
    • 2011
  • Lab scale experiment study was carried out for biological treatment process development in cruise. SBR(Sequence Batch Reactor) process with BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. From the results it was suggested that SBR process with BM might be a suitable process for cruise sewage treatment in terms of decrease in odorous compounds, maintenance of useful microorganisms and creating special environmental conditions. By adding BM to SBR system, odor unit of sulfur compounds was about 20 times reduced.

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: A system-level analysis with RELAP5-3D

  • Zhiee Jhia Ooi;Qiuping Lv;Rui Hu;Matthew Jasica;Darius Lisowski
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1902-1912
    • /
    • 2024
  • This paper presents results from system-level modeling of a water-based reactor cavity cooling system using RELAP5-3D. The computational model is benchmarked with experimental data from a half-scale RCCS test facility at Argonne National Laboratory. The model prediction is first compared with a two-phase oscillatory baseline experimental case where mixed accuracy is obtained. The model shows reasonable prediction of mass flow rate, pressure, and temperature but significant overprediction of void fraction. The model prediction is then compared with a fault case where the inlet of the risers is gradually reduced using a throttling valve. As the valve is closed, the model is able to predict some major flow phenomena observed in the experiment such as the dampening of oscillations, the reintroduction of oscillations, as well as boiling, flashing, and geysering in the risers. However, the timeline of these events are not well captured by the model. The model is also used to investigate the evolution of flow regime in the chimney. This work highlights that the semi-empirical constitutive relations used in RELAP-3D could have a strong influence on the accuracy of the model in two-phase oscillatory flows.

Behavioral Adaptation to an Adaptive Cruise Control System (적응순항제어시스템의 운전자 행동적응)

  • Lee, Woon-Sung;Kim, Young-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.82-88
    • /
    • 2006
  • The study investigated how an adaptive cruise control system induced behavioral adaptation in drivers using a full-scale driving simulator. Forty drivers with different driving styles participated in the study to compare headway-time, vehicle lateral position variation, and head and eye movement when driving with and without the adaptive cruise control system. Results showed that system induced positive behavioral adaptation by drawing consistency in driving speed and headway-time regardless of the driving styles. However, the results also showed that the drivers' reliance on the system induced negative adaptation including reduced lane keeping ability and reduced attention during driving. As a strategy to prevent negative adaptation, the study proposed information service to drivers with the adaptive cruise control system status and driving environment, and investigated effectiveness of the service. Twelve drivers participated in the experiment to compare headway-time, vehicle lateral position variation and subjective ratings when driving with and without the information service. Results showed that the information service assisted the drivers to maintain safer and more comfortable headway-time without impairing drivers' steering ability.

Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel (터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.

The Reality Therapy Program Effect on Occupational Stress in Company Employee (현실요법 집단상담 프로그램이 직장인의 직무스트레스에 미치는 효과)

  • Kim, Se-Bong;Byun, Sang-Hae
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.27-41
    • /
    • 2009
  • This study research the effect that the reality therapy program reduces the occupational stress in company employee. The subjects of this research were company employees of the A area in 30-40's. They were divided into two groups: an experimental group of 10 company employees, and a control groups of 10 company employees. And the reality therapy program was executed to the experiment group. A measurement tool was used a standard occupational stress scale for korean employee that developed by The Korean Society of Occupational Stress. For the purpose of the study, it was t-test to analyze collected data. The result of the study was that the occupational stress in an experiment group which take part in the reality therapy program was meaning statistically reduced than the control group.

  • PDF

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

Heat transfer analysis on the heat exchanger of a stirling cycle machine (스터링 사이클 기기 열교환기의 열전달 해석)

  • Lee, Dae-Yeong;Jo, Gwan-Sik;No, Seung-Tak;Kim, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1385-1394
    • /
    • 1996
  • A theoretical analysis was performed on the heat transfer by laminar oscillating flow in a simplified heat exchanger of a Stirling cycle machine and the results were compared with the experiment of Hwang. In the analysis the general solution to the temperature field obtained by Lee et. al was applied and extended to a more realistic situation. The results show that the heat transfer is influenced by the ratio of the swept distance of the fluid to the length of the heat exchanger as well as the oscillation frequency. This is well consistent with the result of Hwang's experiment. It is also revealed that there exist three distinct regimes having different heat transfer mechanisms. Through the scale analysis the main parameters governing the heat transfer in each regime are reduced and the dependency of the heat transfer on the parameters are examined.