• Title/Summary/Keyword: Reduced diffusion distance

Search Result 15, Processing Time 0.024 seconds

Contribution of a Low-Barrier Hydrogen Bond to Catalysis Is Not Significant in Ketosteroid Isomerase

  • Jang, Do Soo;Choi, Gildon;Cha, Hyung Jin;Shin, Sejeong;Hong, Bee Hak;Lee, Hyeong Ju;Lee, Hee Cheon;Choi, Kwan Yong
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. ${\Delta}^5$-3-ketosteroi isomerase (KSI) catalyzes the allylic isomerization of ${\Delta}^5$-3-ketosteroid to its conjugated ${\Delta}^4$-isomers at a rate that approache the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 $O{\eta}$ and C3-O of equilenin an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 $O{\eta}$ and C3-O of the bound steroi was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

Environmental Damage to Nearby Crops by Hydrogen Fluoride Accident (불화수소 누출사고 사례를 통한 주변 농작물의 환경피해)

  • Kim, Jae-Young;Lee, Eunbyul;Lee, Myeong Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • BACKGROUND: Hydrogen fluoride is one of the 97 accident preparedness substances regulated by the Ministry of Environment (Republic of Korea) and chemical accidents should be managed centrally due to continual occurrence. Especially, hydrogen fluoride has a characteristic of rapid diffusion and very toxic when leaking into the environment. Therefore, it is important to predict the impact range quickly and to evaluate the residual contamination immediately to minimize the human and environmental damages. METHODS AND RESULTS: In order to estimate the accident impact range, the off-site consequence analysis (OCA) was performed to the worst and alternative scenarios. Also, in order to evaluate the residual contamination of hydrogen fluoride in crop, the samples in accident site were collected from 15-divided regions (East direction from accident sites based on the main wind direction), and the concentration was measured by fluoride ($F^-$) ion-selective electrode potentiometer (ISE). As a result of the OCA, the affected distance by the worst scenario was estimated to be >10 km from the accident site and the range by the alternative scenario was estimated to be about 1.9 km. The residual contamination of hydrogen fluoride was highest in the samples near the site of the accident (E-1, 276.82 mg/kg) and tended to decrease as it moved eastward. Meanwhile, the concentrations from SE and NE (4.96~28.98 mg/kg) tended to be lower than the samples near the accident site. As a result, the concentration of hydrogen fluoride was reduced to a low concentration within 2 km from the accident site (<5 mg/kg), and the actual damage range was estimated to be around 2.2 km. Therefore, it is suggested that the results are similar to those of alternative accident scenarios calculated by OCA (about 1.9 km). CONCLUSION: It is difficult to estimate the chemical accident-affecting range/region by the OCA evaluation, because it is not possible to input all physicochemical parameters. However simultaneous measurement of the residual contamination in the environment will be very helpful in determining the diffusion range of actual chemical accident.

A Study on the Sedimentation of Dredged Soils and Shape Changes of a Transparent Vinyl Tube by Filling Tests - Anti-Crater Formation - (준설토 주입방법에 의한 비닐튜브체의 퇴적 및 변형 특성 - 크레이터 방지 기술을 중심으로 -)

  • Kim, Hyeong-Joo;Sung, Hyun-Jong;Lee, Kwang-Hyung;Lee, Jang-Baek
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, two different types of dredged fill injection methods are introduced and filling experiments were conducted to analyze the impact of each technique to the distribution and deposition of dredged soil fill and how it influence the final tube shape. Two transparent plastic tubes were fabricated to observe the deposition behavior of the deposited fill material. Both tubes measured 4.0 meters in length (L) and has vinyl tube diameters (D) of 0.5m and 0.7m. T-type and I-type inlet system are also introduced in this paper. The influence of this inlet systems to the distribution and deposition behavior of dredged soil fill inside the vinyl tubes were observed during the experiment. After the sedimentation of the slurry mixture, the water on top of the soil sediments are removed and the slurry mixture was re-injected into the vinyl tube, this process was carried out repeatedly. The shape changes of the vinyl tube, e.g. the changes in both tube height and width, are constantly monitored after each slurry injection and water draining phases. Crater formation was observed in the case of I-Type inlet system and a non-uniform sediment distribution occurred. For the diffusion deposit of soil particles to long distance are minimal shape technique using the T-Type inlet system. Therefore the undrain filling height ratio ($H/D_0$) was found to be around 0.54 to 0.64 and the horizontal strain ratio ($W/D_0$) ranges from 1.45 to 1.54. The filling soil height is proportional to dredged-material filling phases, but, horizontal strain ratio is constant or inversely reduced so that the center of tube body is raised in the upward direction.