• Title/Summary/Keyword: Reduced current harmonics

Search Result 91, Processing Time 0.023 seconds

Parallel Operation Systems of Z-Source Inverters for Fuel Cell Systems (연료 전지 시스템을 위한 Z-소스 인버터고 구성된 병렬 운전 시스템)

  • Moon Hyun-Wook;Jeong Eun-Jin;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.443-449
    • /
    • 2005
  • In this paper, parallel operation systems with Z-source Inverters for the fuel cell systems are discussed. The carrier phase shifted SPWM(Sinusoidal Pulse Width Modulation) has an advantage in reducing harmonics of output current. However when this technique applies in parallel operation of Z-source inverters, it additionally produces circulating currents. The circulating current is analyzed and a method to prevent the circulating current is applied to the parallel operation systems of Z-source inverters. To maintain high performance with reduced circulating current in inverter output and low harmonic components in load current, circulating current reactors are used. The proposed approach is verified through simulation and experiment.

Circuit Design and Performance Analysis of CCFL Dimming Controller With Frequency Modulation

  • Kim, Cherl-Jin;Ji, Jae-Geun;Yoon, Shin-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The CCFL dimming control methods are generally used lamp current regulation or average current adjustment method feeding the CCFL inverter. Inverter operation frequency is higher than resonant frequency for safe operation. In this study, we design the half-bridge type series and parallel resonant converter circuit that switches at variable frequency modulation methods to control the output power. This method has advantages such as low EMI and reduced harmonics, and it is convenient for dimming control using a microprocessor. The validity of this study is confirmed from the simulation and experimental results.

Improved Charge Pump Power Factor Correction Electronic Ballast Based on Class DE Inverter

  • Thongkullaphat, Sarayoot
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • This paper proposes fluorescent electronic ballast with high power factor and low line input current harmonics. The system performance can be improved by a charged pump circuit. Details of design and circuit operation are described. The proposed electronic ballast is modified from single-stage half bridge class D electronic ballast by adding capacitor parallel with each power switch and setting the circuit parameter to operate under class DE inverter condition. By using this proposed method the DC bus voltage can be reduced around by 50% compare with conventional class D inverter circuit. Because the power switches are operated at zero voltage switching condition and low dv/dt of class DE switching. The experimental results show that the proper frequency of the prototype is around 50 kHz with input power factor of 0.982, $THD_i$ 10.2% at full load and efficiency of more than 90%.

The design of CCFL Driving Circuit by Resonant Invertor and Dimming IC (조도조절이 가능한 공진형 인버터 적용 CCFL 구동회로의 설계)

  • Kim, Cherl-Jin;Ji, Jae-Geun;Kim, Sung-Lae;Yoon, Shin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1181-1183
    • /
    • 2003
  • Cold cathode fluorescent lamp(CCFL) are widely used to illuminate the liquid crystal display(LCD). Usually, CCFL dimming methods are used to lamp current regulation or average current adjust feeding the CCFL inverter. Switching frequency of inverter is higher than resonant frequency at stabile states. In this study, design of CCFL driving circuit by half-bridge type series and parallel resonant inverter that variable frequency modulation method to control the output power. This method has advantages such as low EMI and reduced harmonics. And it is easy to dimming control use microprocessor. The validity of this study is confirmed from the simulation and experimental results.

  • PDF

A Predictive Current Controller for Battery Energy Storage System Based on the Space Vector PWM of Transformer Coupled Inverters (다중 인버터로 구성된 전력 저장 전지 시스템의 전류 제어를 위한 예측 제어기)

  • Park, Seon-Sun;Jo, Seong-Jin;Kim, Ho-Yong;No, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.711-714
    • /
    • 1993
  • A predictive current controller for the Battery Energy Stroage System(BESS) based on space vector PWM of transformer coupled inverters is presented. The control method have many advantages such as accurate control, reduced harmonics, good dynamics, improved stability, wide control range, etc,. The simulation results show that the predictive control method with space vector PWM is suitable for the transformer coupled inverters applied to the battery energy storage system.

  • PDF

Three-Level Predictive Power Factor Correction Technique for Push-Pull Quantum Series Resonant Rectifier (푸쉬풀 퀀텀 직렬공진형 정류기의 3레벨 예측형 역률개선 기법)

  • Moon, Gun-Woo;Baik, In-Chul;Jung, Young-Seok;Lee, Jun-Yeong;Roh, Jung-Wook;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.368-370
    • /
    • 1995
  • A new three-level push-pull type quantum series resonant rectifier for the power factor correction is proposed. The proposed single phase rectifier enables a zero-current switching operation of all the power devices allowing the circuit to operate at high switching frequencies and high power levels. With the proposed control technique, an unity power factor and greatly reduced line current harmonics can be obtained.

  • PDF

A single-phase high-power-factor rectifier using LC resonance in commercial frequenc (상용주파주의 LC공진을 이용한 단상고역률정류회로)

  • Kim, J.Y.;Lee, S.H.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.204-206
    • /
    • 2002
  • For small capacity rectifier circuits such as these for consumer electronics and appliances. capacitor input type rectifier circuits are generally used Consequently. various harmonics generated within the power system become a serious Problem. Various studies of this effect have been presented previously. However. most of these employ switching devices, such as FETs and the like. The absence of switching devices makes systems more tolerant to over -load, and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method. It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency. Hence, the harmonic characteristics can be significantly improved. where the lower order harmonics. such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and expermental implementations.

  • PDF

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

Study on the High Efficiency Design through the Loss Reduction of the 110kW Class High-output Density PMSM (110kW급 고출력 밀도형 PMSM의 손실 저감을 통한 고효율 설계에 대한 연구)

  • Jun, Hyun-Woo;Park, Eung-Seok;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.954-959
    • /
    • 2015
  • In this paper, 110kW high output density, high efficiency Permanent Magnet Synchronous Motor which can be applied on tram’s traction system is introduced, along with its output and loss characteristics. The motor model is 2pole 18slot model and its size has been reduced through the high speed for high output density. Especially, structure and retainer sleeve structure is applied to its structure, which is also appropriate for high speed rotation. This kind of structure has eddy current loss problem on the surface of rotor, which must be reduced for high output density design. This study has designed the most optimized additional design parameter in order to improve the output characteristics and efficiency of previous produced 2pole 18 slot 110kW motor model and how the width of airgap affects from the loss perspective is mainly analyzed. Finally, the analysis on the extent of the efficiency improvement effect compared to the previous model has performed through electromagnetic FEM analysis. The influence of airgap flux density distribution has also been thoroughly examined.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.