• Title/Summary/Keyword: Redox process

Search Result 223, Processing Time 0.025 seconds

Photochemical Studies of Schiff Base Cu(II) Complex: (1) UV-Irradiation of N,$N^{\prime}$-bis(salicylidene)ethylenediamine copper(II)

  • An, Byeong Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.202-204
    • /
    • 1995
  • The ultraviolet photochemistry of N,N'-bis(salicylidene)ethylenediamine copper(II), Cu(sal)2en, was investigated with low pressure mercury lamp. Redution of Cu(Ⅱ) and formation of Cl- were shown on 254 nm irradiation both for aerated and deaerated chlorinated hydrocarbon solvent such as CH2Cl2, chloroform, and 1,2-dichloroethane. Relatively long lived $({\tau}=100{\mu}sec)$ intermediate was detected by flash photolysis. Overall photo-process can be described as the formation of Cl- and new copper complex, product(1) by chlorohydrocarbon mediation, photoinduced reduction by abstraction of halogen from solvent, followed by redox induced substitution of axial ligand with chlorine. Product(1) is possibly Cu(III) chlorosalicylaldeimido complex and cyclic -CH2CH2- moiety is absent in the structure. 247nm band of Cu(sal)2en should contain ligand to metal charge transfer character.

15-DEoxy-$d^{12,14}$ Prostaglandin $J_2$ Rescues Pc12 Cells From Hydrogen Peroxide-induced Apoptosis Through Upregulation Of Heme Oxygenase-1

  • Kim, Ji-Woo;Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.153.1-153.1
    • /
    • 2003
  • Oxidative stress induced by reactive oxygen intermediates (ROIs) has been implicated in a variety of human diseases including cancer, diabetes, rheumatoid arthritis and neurodegenerative disorders. Hydrogen peroxide ($H_2O_2$), a representative ROI which is produced during the cellular redox process, can cause cell death via apoptosis and/or necrosis depending on its concentrations. l5-Deoxy-$D^{12, 14}$ prostaglandin $J_2$ (15d-$PGJ_2$), a dehydration product of prostaglandin $D_2$, has been reportd to possess a number of biological activities such as anti-inflammatory, anticarcinogenic, and antioxidative properties. (omitted)

  • PDF

Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy

  • Xiaofeng Dai;Jiale Wu;Lianghui Lu;Yuyu Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.496-514
    • /
    • 2023
  • Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33

  • Lee, Yoo-Sup;Ko, Hyun-Suk;Ryu, Kyoung-Seok;Jeon, Young-Ho;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.

Characteristics of Nano-crystalline TiO2 Dye-sensitized Solar Cells having Counter Electrodes with Different Preparing Process

  • Lee, Dong-Yoon;Koo, Bo-Kun;Kim, Hyun-Ju;Lee, Won-Jae;Song, Jae-Sung;Kim, Hee-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.238-242
    • /
    • 2005
  • The Pt counter electrode of a dye-sensitized solar cell (DSSC) plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt electrodes were prepared by a electro-deposition and a RF magnetron sputtering. Electrochemical behavior of Pt electrodes was compared using cyclic-voltammetry and impedance spectroscopy. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. I-V characteristics of DSSC were measured and discussed in association with the surface properties of counter electrode. As a result, electrochemical properties of electro-deposited Pt electrode were superior to that of sputtered Pt electrode. This is likely that enlarged area of surface in electro-deposited Pt electrode in comparison with the case of sputtered Pt electrode playa role in enhancing such electrochemical properties.

Preparation and Characterization of Polypyrrole Electroactive Actuators (Polypyrrole를 이용한 전기활성 구동기의 제조 및 특성)

  • 박정태;최혁렬;김훈모;전재욱;남재도
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.826-832
    • /
    • 2001
  • In this study, PPy/gold/mylar type electroactive bi-layer actuator was prepared by the electrochemical polymerization of pyrrole onto the gold/mylar film and the actuation characteristics were studied using bending beam method. Conducting polymer-based actuators undergo volumetric changes due to the movement of dopant ions into the film during the electrical oxidation process. The bilayer films exhibited different actuation characteristics depending on dopant ion size. It was observed that the relatively small dopant ion (i.e. toluene sulfonate) moved into the PPy film at oxidized state, so volume expanded to result in bending motion. In case of the film having large dopant ion (i.e. dodecylbenzenesulfonate), volume expansion was observed at reduced state. This is due to the incorporation of $Na^+$ counterion with water molecules, while the large dopant ion was fixed in the film due to the limited mobility during tile redox process.

  • PDF

Study on the Electrochemical Behavior of the Viologen Monolayers by Different Chemical Structure (분자구조에 따른 Viologen 단분자막의 전기화학적 특성 연구)

  • Ock, Jin-Young;Shin, Hoon-Kyu;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.918-921
    • /
    • 2003
  • The electrochemical behavior of vilogen self-assembled monolayer has been investigated with QCM, which has been known as ng order mass detector. The self-assembly process of viologen was monitored using resonant frequency(${\Delta}F$) and resonant resistance(R). The QCM measurements indicated a mass adsorption for viologen assembling on the gold surface with a frequency change about 300, 135 Hz and calculated its surface coverage($\Gamma$) to be $5.02{\times}10^{-9}$ and $1.64{\times}10^{-9}mol/cm^2$. Also a reversible redox process was observed and analyzed with an ionic interaction at the Viologen/solution interface using ${\Delta}F$.

  • PDF

A Electron-Transfer Study on Self-Assembled Viologen Monolayer In different Electrolytes Using Electrochemical Process (전기화학법을 이용한 전해질 변화에 따른 Viologen 자기조립박막의 전하이동 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Park, Jae-Chul;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.878-881
    • /
    • 2004
  • When it converted solar energy or light energy into chemical energy, it studied the electric charge transfer property of the viologen which is used widely as the electron acceptor for the electric charge delivery mediation of the devices. It was formed monolayer in QCM by self-assembled viologen. The absorbed quantities of viologen's electron through peak current and to analyze the electron transfer property of viologen in redox reaction made experiments in cyclic voltammetry among the electrochemical process. It studied the electron transfer relation of viologen from changing the anion in 0.1M NaCl and $NaClO_4$ electrolyte and the interrelation between scan rate and peak current when scan rate increased twice.

  • PDF

Adsorptive Catalytic Wave of Chromium-Cupferron Complex (크롬-쿠페론 착물의 흡착 촉매파)

  • Kwon, Young-Soon;Seo, Soh-Jin;Lee, Sang-Mi
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2002
  • The interfacial accumulation of the chromium-cupferron complex and the catalytic wave of its redox process is characterized by cyclic voltammetry. One cathodic peak is observed in the forward scan at -1.45 V. Scanning in the reverse direction produces a inverted peak at -1.39 V, which is indicative of a catalytic process. The optimal conditions of inverted peak were found to be 1 mM borate buffer solution(pH 9.48) containing $1{\times}10^{-4}M$ cupferron, holding potential of -1.8 V and scan rate of 20 mV/s. Using main peak, a preconcentration time of 1 min results in a detection limit of $3.2{\times}10^{-10}M$.