• Title/Summary/Keyword: Redox cycle

Search Result 91, Processing Time 0.024 seconds

Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection

  • Ghosh, Ritesh;Choi, Bosung;Kwon, Young Sang;Bashir, Tufail;Bae, Dong-Won;Bae, Hanhong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.609-622
    • /
    • 2019
  • Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Effect of pH on the Iron Autoxidation Induced DNA Cleavage

  • Kim, Jong-Moon;Oh, Byul-Nim;Kim, Jin-Heung;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1290-1296
    • /
    • 2012
  • Fenton reaction and iron autoxidation have been debated for the major process in ROS mediated DNA cleavage. We compared both processes on iron oxidation, DNA cleavage, and cyclic voltammetric experiment at different pHs. Both oxidation reactions were preferred at basic pH condition, unlike DNA cleavage. This indicates that iron oxidation and the following steps probably occur separately. The ROS generated from autoxidation seems to be superoxide radical since sod exerted the best inhibition on DNA cleavage when $H_2O_2$ was absent. In comparison of cyclic voltammograms of $Fe^{2+}$ in NaCl solution and phosphate buffer, DNA addition to phosphate buffer induced significant change in the redox cycle of iron, indicating that iron may bind DNA as a complex with phosphate. Different pulse voltammogram in the presence of ctDNA suggest that iron ions are recyclable at acidic pH, whereas they may form an electrically stable complex with DNA at high pH condition.

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (전산 고체물리를 이용한 바이오 산화망간 광물의 금속흡착과 광화학 반응도의 이해)

  • Kwon, Ki-Deok D.;Sposito, Garrison
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

Thermal Behavior of $NiFe_2O_4$ for Hydrogen Generation (열화학 사이클 $H_2$ 제조를 위한 $NiFe_2O_4$의 열적 거동)

  • 한상범;강태범;주오심;정광덕
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.51-55
    • /
    • 2003
  • The thermal behavior of NiFe$_2$O$_4$ prepared by a solid-state reaction was investigated for H$_2$ generation by the thermochemical cycle. The reduction of NiFe$_2$O$_4$ started from 800 $^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to 1000 $^{\circ}C$. At this reaction, NiFe$_2$O$_4$ was reduced by release of oxygen bonded with the Fe$^3$ion in the B site of NiFe$_2$O$_4$. In the $H_2O$ decomposition reaction, H$_2$ was generated by oxidation of reduced NiFe$_2$O$_4$. The crystal structure of NiFe$_2$O$_4$ for redox reaction maintained spinel structure. Then, NiFe$_2$O$_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce H$_2$ maintaining crystal structure for redox reaction.

  • PDF

A Study on the Removal of Phosphorus from Wastewater by Redox Reaction of Cu-Zn metal alloy (Cu-Zn 금속합금의 산화 환원 반응을 이용한 수중 탈인처리에 관한 연구)

  • Kim, Tae-Kyeong;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • The purpose of this study is to evaluate the removal efficiency of phosphorus from synthetic waste water by reduction and oxidation reaction of Cu-Zn metal alloy. Cu-Zn metal alloy applied in this study is composed of 40% of Zn and 60% of Cu, which is so called Muntz metal. And the fibrous type of metal alloy has approximately $200{\mu}m$ of thickness. Metal is oxidized in an aqueous solution to generate electron and metal ion. The mechanism of phosphate treatment is co-precipitation of metal ion and phosphorous ion at various pH and temperature. The treatment efficiency showed the maximum at a one cycle treatment. This result means that the surface area of reaction material is sufficient enough to get reaction equilibrium. Experiment is conducted at various pH from 5 to 9, and showed the maximum efficiency at pH 8. Phosphorous is dominated as a type of $H_2PO_4{^-}$ and $HPO_4{^{2-}}$ at this pH condition. We could not consider the temperature effect independently, because phosphorous removal efficiency showed such a complex mechanism. We could get high efficiency at lower temperature in this research.

Electrochemical and Fluorescent Properties of Ferrocenyl Chalcones Containing 1-Naphthalenyl Group: X-ray Crystal Structure of Fc-C(O)CH=CH-(1-Naph)

  • Suh, Woo-Young;Jeon, Hyo-Kyung;Lee, Ji-Yeon;Lim, Chae-Mi;Lee, Su-Kyung;Noh, Dong-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.443-448
    • /
    • 2012
  • Ferrocenyl chalcones (Fc-C(O)CH=CH-Ar: Fc-Ar) with mono- and di-1-naphthalenyl moieties (Fc-1Naph and Fc-d1Naph) were prepared and spectroscopically characterized. The enone bridge was in the s-cis conformation and the $\pi$-electrons on the C=C bond were further delocalized on the bridge. The naphthalenyl moiety deviates greatly from the enone-Cp plane by $26.9(1)^{\circ}$. Cyclic voltammetry measurements for Fc-1Naph exhibit one reversible cycle for the redox of the ferrocenyl moiety at a lower potential, and one irreversible oxidation peak at the higher potential region. For Fc-d1Naph, the cyclic voltammogram is more featureless. Fluorescence properties for both compounds are active in polar solvents with $\lambda_{em}$ = 500 nm (EtOH) and $\lambda_{em}$ = 512 nm (MeOH) for Fc-1Naph and $\lambda_{em}$ = 496 nm (EtOH) and $\lambda_{em}$ = 508 nm (MeOH) for Fc-d1Naph. The intensity of Fc-d1Naph is more than twice than that of Fc-1Naph. The fluorescence properties for both compounds are inactive in the less polar solvents such as $CH_3CN$, $CH_2Cl_2$ and $CHCl_3$.

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF