Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.11.2018.0248

Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection  

Ghosh, Ritesh (Department of Biotechnology, Yeungnam University)
Choi, Bosung (Department of Biotechnology, Yeungnam University)
Kwon, Young Sang (Environmental Toxicology Research Center, Korea Institute of Toxicology)
Bashir, Tufail (Department of Biotechnology, Yeungnam University)
Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University)
Bae, Hanhong (Department of Biotechnology, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 609-622 More about this Journal
Abstract
Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.
Keywords
mechanosensation; plant immunity; priming; proteomics; sound vibration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chehab, E. W., Wang, Y. and Braam, J. 2011. Mechanical force responses of plant cells and plants. In: Mechanical integration of plant cells and plants, ed. by P. Wojtaszek, pp. 173-194.
2 Springer-Verlag Berlin Heidelberg, Heidelberg, Germany. Chehab, E. W., Yao, C., Henderson, Z., Kim, S. and Braam, J. 2012. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr. Biol. 22:701-706.   DOI
3 Chien, C.-H., Chow, C.-N., Wu, N.-Y., Chiang-Hsieh, Y.-F., Hou, P.-F. and Chang, W.-C. 2015. EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics 16 Suppl 2:S6.
4 Choi, B., Ghosh, R., Gururani, M. A., Shanmugam, G., Jeon, J., Kim, J., Park, S.-C., Jeong, M.-J., Han, K.-H., Bae, D.-W. and Bae, H. 2017. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci. Rep. 7:2527.   DOI
5 Ghosh, R., Gururani, M. A., Ponpandian, L. N., Mishra, R. C., Park, S.-C., Jeong, M.-J. and Bae, H. 2017. Expression analysis of sound vibration-regulated genes by touch treatment in Arabidopsis. Front. Plant Sci. 8:100.
6 Ghosh, R., Mishra, R. C., Choi, B., Kwon, Y. S., Bae, D. W., Park, S.-C., Jeong, M.-J. and Bae, H. 2016. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci. Rep. 6:33370.   DOI
7 Herbers, K., Meuwly, P., Metraux, J.-P. and Sonnewald, U. 1996. Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett. 397:239-244.   DOI
8 Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B. and Mina, G. 2013. Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol. Plant. 35:2847-2855.   DOI
9 Springer-Verlag Berlin Heidelberg, Heidelberg, Germany. Rausch, T. and Wachter, A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10:503-509.   DOI
10 Rojas, C. M., Senthil-Kumar, M., Wang, K., Ryu, C.-M., Kaundal, A. and Mysore, K. S. 2012. Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336-352.   DOI
11 Wei, M., Yang, C.-Y. and Wei, S.-H. 2012. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J. Plant Physiol. 169:770-774.   DOI
12 van Kan, J. A. L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247-253.   DOI
13 Wan, R., Hou, X., Wang, X., Qu, J., Singer, S. D., Wang, Y. and Wang, X. 2015. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front. Plant Sci. 6:854.   DOI
14 Wang, B., Zhao, H., Wang, X., Duan, C., Wang, D. and Sakanishi, A. 2002. Influence of sound stimulation on plasma membrane H+-ATPase activity. Colloids Surf. B Biointerfaces 25:183-188.   DOI
15 Xiao, W., Sheen, J. and Jang, J.-C. 2000. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44:451-461.   DOI
16 Xiaocheng, Y., Bochu, W. and Chuanren, D. 2003. Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids Surf. B Biointerfaces 30:67-72.   DOI
17 Kwon, Y. S., Lee, D. Y., Rakwal, R., Baek, S.-B., Lee, J. H., Kwak, Y.-S., Seo, J.-S., Chung, W. S., Bae, D.-W. and Kim, S. G. 2016. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122-135.   DOI
18 Xiujuan, W., Bochu, W., Yi, J., Defang, L., Chuanren, D., Xiaocheng, Y. and Sakanishi, A. 2003. Effects of sound stimulation on protective enzyme activities and peroxidase isoenzymes of chrysanthemum. Colloids Surf. B Biointerfaces 27:59-63.   DOI
19 Yi, J., Bochu, W., Xiujuan, W., Chuanren, D. and Xiaocheng, Y. 2003. Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surf. B Biointerfaces 27:65-69.   DOI
20 Zhang, Z., Ober, J. A. and Kliebenstein, D. J. 2006. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536.   DOI
21 Kwon, Y. S., Ryu, C.-M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M.-J., Kim, H. K. and Bae, D.-W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355-1370.   DOI
22 Li, B., Wei, J., Wei, X., Tang, K., Liang, Y., Shu, K. and Wang, B. 2008. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids Surf. B Biointerfaces 63:269-275.   DOI
23 Li, Z.-G. and Gong, M. 2011. Mechanical stimulation-induced cross-adaptation in plants: an overview. J. Plant Biol. 54:358-364.   DOI
24 Liu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J. and Wei, Y. 2010. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845-3863.   DOI
25 Mishra, R. C., Ghosh, R. and Bae, H. 2016. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 67:4483-4494.   DOI
26 Liu, Y., Ahn, J.-E., Datta, S., Salzman, R. A., Moon, J., Huyghues-Despointes, B., Pittendrigh, B., Murdock, L. L., Koiwa, H. and Zhu-Salzman, K. 2005. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol. 139:1545-1556.   DOI
27 Lopez-Ribera, I. and Vicient, C. M. 2017. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal. Behav. 12:e 1368938.   DOI
28 Iida, H. 2014. Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Front. Plant Sci. 5:453.   DOI
29 Martinez, M., Abraham, Z., Gambardella, M., Echaide, M., Carbonero, P. and Diaz, I. 2005. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J. Exp. Bot. 56:1821-1829.   DOI
30 Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M. and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822.   DOI
31 Monshausen, G. B. and Haswell, E. S. 2013. A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64:4663-4680.   DOI
32 Pastor, V., Luna, E., Mauch-Mani, B., Ton, J. and Flors, V. 2013. Primed plants do not forget. Environ. Exp. Bot. 94:46-56.   DOI
33 Peumans, W. J. and van Damme, E. J. M. 1995. The role of lectins in plant defence. Histochem. J. 27:253-271.   DOI
34 Bolouri Moghaddam, M. R. and van den Ende, W. 2012. Sugars and plant innate immunity. J. Exp. Bot. 63:3989-3998.   DOI
35 Qi, L., Teng, G., Hou, T., Zhu, B. and Liu, X. 2010. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In: Computer and computing technologies in agriculture (III), eds. by D. L. Li and C. Zhao, pp. 449-454.
36 Bellincampi, D., Cervone, F. and Lionetti, V. 2014. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228.   DOI
37 Bernsdorff, F., Doring, A. C., Gruner, K., Schuck, S., Brautigam, A. and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28:102-129.   DOI
38 Caplan, J. L., Kumar, A. S., Park, E., Padmanabhan, M. S., Hoban, K., Modla, S., Czymmek, K. and Dinesh-Kumar, S. P. 2015. Chloroplast stromules function during innate immunity. Dev. Cell 34:45-57.   DOI
39 Bolton, M. D. 2009. Primary metabolism and plant defense: fuel for the fire. Mol. Plant-Microbe Interact. 22:487-497.   DOI
40 Braam, J. 2005. In touch: plant responses to mechanical stimuli. New Phytol. 165:373-389.   DOI
41 Appel, H. M. and Cocroft, R. B. 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257-1266.   DOI
42 Balmer, A., Pastor, V., Gamir, J., Flors, V. and Mauch-Mani, B. 2015. The 'prime-ome': towards a holistic approach to priming. Trends Plant Sci. 20:443-452.   DOI