• Title/Summary/Keyword: Redox agent

Search Result 60, Processing Time 0.019 seconds

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Effect of Selenium on the Thyroid gland Antioxidative Metabolisms in Rat Model by Ionizing Radiation (셀레늄이 전리방사선에 의한 힌쥐 모델에서의 갑상선 항산화계에 미치는 영향)

  • Choi, Hyung-Seok;Choi, Jun-Hyeok;Jung, Do-Young;Kim, Jang-Oh;Shin, Ji-Hye;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.135-142
    • /
    • 2017
  • Selenium (Se), which is natural materials existing was known as an important component of selenoprotein, one of the important proteins responsible for the redox pump of a living body. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the thyroid gland was used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium (Se) through changes of blood components, thyroid hormones (T3, T4), antioxidant enzyme (GPx) activity and thyroid tissue changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet)(p<0.05). The activity of Glutathione Peroxidase (GPx), the antioxidant enzyme, and the activity of the target organ, thyroid hormone (T3, T4), also showed significant activity changes (p<0.05). In the observation of tissue changes, it was confirmed that there was a protective effect of thyroid cell damage which caused the cell necrosis by radiation treatment. Therefore, it is considered that selenium(Se) can be utilized as a radiation defense agent by inducing immunogenic activity effect of a living body.

Mechanism of Free Phosphate Production by Penicillium sp. GL-101, Phosphate Solubilizing Fungus, in the Submerged Culture (인산가용화균 Penicillium sp. GL-101의 유리인산 생성기작에 관한 연구)

  • Kang, Sun-Chul;Yang, Mi-Ok;Tae, Un-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • We investigated the capability of the phosphate-solubilizing fungus, Penicillium sp. GL-101, to solubilize in vitro some insoluble rock phosphate via possible mechanisms: acidification of the medium, production of chelating metabolites, redox activity, and so on. GL-101 was able to solubilize rock phosphate (mostly calcium phosphate) in a liquid potato dextrose broth(PDB) medium, as determined by spectrophotometric analyses. Acidification was the major mechanism of solubilization since the pH of cultures fell below 4.0 and in cultures containing 1.0%(w/v) loess the pH dropped from 7.0 to 3.2. More than 10 mg/mL concentrations of citric acids were detected by high-performance liquid chromatography(HPLC) in the culture supernatants. Also this fungus showed the phosphatase activity (over 1.3 unit) to contribute partially releasing phosphate from rock phosphate, when supplemented with 1.0% loess in culture broth. The chelating activity of GL-101 in culture supernatants was not present because 2-ketogluconic acid, a chelating agent for the phosphate, was produced only a basal level. Therefore, the solubilization mechanism of rock phosphate by Penicillium sp. GL-101 involves both acidification due to citric acid production and phosphatase activity.

  • PDF

Extraction Behaviour of Np with DEHPA from the Low Nitric Acid Solution Containing Hydrogen Peroxide (과산화수소가 함유된 저산도 질산용액에서 DEHPA 추출제에 의한 Np의 추출거동)

  • Lee, E.H.;Yang, H.B.;Kim, K.K.;Lim, J.K.;Yoo, J.H.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.707-714
    • /
    • 1996
  • Extraction behaviour of Np with DEHPA(di-(2-ethyhexyl)Phosphoric acid) from the low nitric acid solution(below 1M $HNO_3$) containing $H_2O_2$ as a reducing agent was studied at a batch system in order to establish the conditions of extraction and stripping and to enhance the extraction rate. As results, it was confirmed that the Np was mainly the pentavalent oxidation state in the low nitric acid solution. The extraction yield of Np was increased with increasing the concentration of DEHPA and $H_2O_2$ and decreased more rapidly with the increase of $HNO_3$ concentration. It was also found that the Np could be extracted into DEHPA even without the addiction any redox agents, although the extraction yield is rather low as about 70%. The extraction rate was proportional to the 0.516 power of $H_2O_2$ concentration and inversely proportional to 0.483 power of $HNO_3$ concentration as follows. $d[Np(V)]/dt=-1.391{\times}10^{-2}[H_2O_2]^{0.516}[HNO_3]^{-0.483}[Np(V)]$ Regardless of the $H_2O_2$, the Np extracted in the organic phase was effectively stripped to the aqueous phase with $H_2C_2O_4$. The Np could be stripped more than 92 % with 0.5M $H_2C_2O_4$.

  • PDF

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.

A Novel Synthesized Tyrosinase Inhibitor, (E)-3-(4-hydroxybenzylidene) chroman-4-one (MHY1294) Inhibits α-MSH-induced Melanogenesis in B16F10 Melanoma Cells (신규 합성물질 (E)-3-(4-하이드록시벤질리딘)크로마논 유도체의 티로시나아제 효소활성 저해 및 멜라닌 생성 억제 효과)

  • Jeon, Hyeyoung;Lee, Seulah;Yang, Seonguk;Bang, EunJin;Ryu, Il Young;Park, Yujin;Jung, Hee Jin;Chung, Hae Young;Moon, Hyung Ryong;Lee, Jaewon
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.719-728
    • /
    • 2021
  • Melanin pigments are abundantly distributed in mammalian skin, hair, eyes, and nervous system. Under normal physiological conditions, melanin protects the skin against various environmental stresses and acts as a physiological redox buffer to maintain homeostasis. However, abnormal melanin accumulation results in various hyperpigmentation conditions, such as chloasma, freckles, senile lentigo, and inflammatory pigmentation. Tyrosinase, a copper-containing enzyme, plays an important role in the regulation of the melanin pigment biosynthetic pathway. Although several whitening agents based on tyrosinase inhibition have been developed, their side effects, such as allergies, DNA damage, mutagenesis, and cytotoxicity of melanocytes, limit their applications. In this study, we synthesized 4-chromanone derivatives (MHY compounds) and investigated their ability to inhibit tyrosinase activity. Of these compounds, (E)-3-(4-hydroxybenzylidene)chroman-4-one (MHY1294) more potently inhibited the enzymatic activity of tyrosinase (IC50 = 5.1±0.86 μM) than kojic acid (14.3±1.43 μM), a representative tyrosinase inhibitor. In addition, MHY1294 showed competitive inhibitory action at the catalytic site of tyrosinase and had greater binding affinity at this site than kojic acid. Furthermore, MHY1294 effectively inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis and intracellular tyrosinase activity in B16F10 melanoma cells. The results of the present study indicate that MHY1294 may be considered as a candidate pharmacological agent and cosmetic whitening ingredient.