DOI QR코드

DOI QR Code

Effect of Selenium on the Thyroid gland Antioxidative Metabolisms in Rat Model by Ionizing Radiation

셀레늄이 전리방사선에 의한 힌쥐 모델에서의 갑상선 항산화계에 미치는 영향

  • Choi, Hyung-Seok (Department of Emergency Management, Inje University) ;
  • Choi, Jun-Hyeok (Radiation Safety Research Center, Inje University) ;
  • Jung, Do-Young (Department of Emergency Management, Inje University) ;
  • Kim, Jang-Oh (Department of Emergency Management, Inje University) ;
  • Shin, Ji-Hye (Department of Emergency Management, Inje University) ;
  • Min, Byung-In (Department of Nuclear Applied Engineering, Inje University)
  • 최형석 (인제대학교 재난관리학과) ;
  • 최준혁 (인제대학교 방사선방재센터) ;
  • 정도영 (인제대학교 재난관리학과) ;
  • 김장오 (인제대학교 재난관리학과) ;
  • 신지혜 (인제대학교 재난관리학과) ;
  • 민병인 (인제대학교 원자력응용공학부)
  • Received : 2017.02.09
  • Accepted : 2017.03.14
  • Published : 2017.03.31

Abstract

Selenium (Se), which is natural materials existing was known as an important component of selenoprotein, one of the important proteins responsible for the redox pump of a living body. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the thyroid gland was used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium (Se) through changes of blood components, thyroid hormones (T3, T4), antioxidant enzyme (GPx) activity and thyroid tissue changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet)(p<0.05). The activity of Glutathione Peroxidase (GPx), the antioxidant enzyme, and the activity of the target organ, thyroid hormone (T3, T4), also showed significant activity changes (p<0.05). In the observation of tissue changes, it was confirmed that there was a protective effect of thyroid cell damage which caused the cell necrosis by radiation treatment. Therefore, it is considered that selenium(Se) can be utilized as a radiation defense agent by inducing immunogenic activity effect of a living body.

천연물에 존재하는 셀레늄(Se)은 생체의 산화환원작용을 주관하는 중요한 단백질의 하나인 셀레늄함유단백질(selenoprotein)의 중요한 요소로 알려져 있다. 셀레늄(Se)을 Rat에 경구 투여하여 10 Gy의 방사선을 조사 시킨 후 갑상선을 표적 장기로 삼고 1일, 7일, 21일 기간에 따른 혈구성분의 변화, 갑상선호르몬(T3, T4)의 변화, 항산화효소((Glutathione Peroxidase, GPx)의 활성 변화, 갑상선 조직 변화 관찰을 통하여 셀레늄(Se)의 방사선 방호 작용을 알아보고자 하였다. 실험결과 조혈 면역계(혈색소농도, 호중구, 혈소판)에서 회복을 보이는 유의한 방호 효과가 있었다(p<0.05). 항산화효소인 Glutathione Peroxidase(GPx) 활성과 표적 장기인 갑상선 호르몬(T3, T4)의 활성 변화 결과에서도 유의성 있는 활성 변화를 보였으며(p<0.05), 조직 변화 관찰에서는 방사선 처리에 의한 세포 괴사를 일으킨 갑상선 세포 손상 보호 효과가 있음을 확인하였다. 따라서, 셀레늄(Se)은 떨어진 생체의 면역 활성 효과를 유도함으로써 방사선 방어제로 활용될 수 있을 것이라 판단된다.

Keywords

References

  1. Chong Soon KIM: Thyroid Cancer and Radiation, Clin Exp Thyroidol, 8(1), 1-7, 2015
  2. Rayman M. P.: The importance of selenium to human health, The Lancet, 356, 233-241, 2000 https://doi.org/10.1016/S0140-6736(00)02490-9
  3. J. H. Park: Cancer Facts & Figures, Seoul: National Cancer Center, Ministry of Health & Welfare, 6-15, 2012
  4. Sunde RA.: Molecular biology of selenoproteins, Annu Rev Nutr, 10, 451-474, 1990 https://doi.org/10.1146/annurev.nu.10.070190.002315
  5. Duntas LH, Mantzou E, Koutras DA.: Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis, Eur J Endocrinol, 148, 389-93, 2003 https://doi.org/10.1530/eje.0.1480389
  6. Turker O, Kumanlioglu K, Karapolat I, Dogan I.: Selenium treatment in autoimmune thyroiditis: 9-month followup with variable doses, J Endocrinol, 190, 151-6, 2006 https://doi.org/10.1677/joe.1.06661
  7. Paglia DE, Valentine WN.: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J Lab Clin Med, 70, 158-169, 1967
  8. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation(UNSCRAR 2008 Report to the General Assembly with Scientific Annexes C, D and E), Vol. II. New York(NY), United Nations, 2011
  9. Ivanov VK, Gorski AI, Maksioutov MA, Vlasov OK, Godko AM, Tsyb AF, et al.: Thyroid cancer incidence among adolescents and adults in the Bryansk region of Russia following the Chernobyl accident, Health Phys, 84(1), 46-60, 2003 https://doi.org/10.1097/00004032-200301000-00004
  10. Chernobyl Forum: Health effects of the Chernobyl accident and special health care programmes, Geneva World Health Organization, 2006
  11. Dickman PW, Holm LE, Lundell G, Boice JD Jr, Hall P.: Thyroid cancer risk after thyroid examination with 131I apopulation-based cohort study in Sweden, Int J Cancer, 106(4), 580-7, 2003 https://doi.org/10.1002/ijc.11258
  12. Ivanov VK, Kashcheev VV, Chekin SY, Maks-ioutov MA,Tumanov KA, Vlasov OK, et al.: Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident(estimation of radiation risks, 1991-2008 follow-up period), Radiat Prot Dosimetry, 151(3), 489-99, 2012 https://doi.org/10.1093/rpd/ncs019
  13. Birringer M, Pilawa S, Flohe L.: Trends in selenium biochemistry, Nat Prod Rep, 19, 693-718, 2002 https://doi.org/10.1039/B205802M
  14. Behne D, Kyriakopoulos A.: Mammalian selenium containing proteins, Annu Rev Nutr, 21, 453-473, 2001 https://doi.org/10.1146/annurev.nutr.21.1.453
  15. Dong-Hwan LEE: Inherited Metabolic Diseases, KOMB, 775-776, 2008
  16. Larsen PR.: Update on the human iodothyronine selenodeiodinases, the enzymes regulating the activation and inactivation of thyroid hormone, Biochem Soc Trans, 25, 588-592, 1997 https://doi.org/10.1042/bst0250588
  17. Windisch W, Gabler S, Kirchgessner M: Effect of selenite, selonocystein and selenomethionine on the selenium metabolism of 75Se labeled rat, Anim. Physiol. a. Anim Nutr, 78, 67-74, 1997 https://doi.org/10.1111/j.1439-0396.1997.tb00857.x
  18. Lawrence, R. A, Burk, R. F.: Species, tissue and subcellular distribution of non Se-dependent glutathione peroxidase, J. Nutr, 108, 211-215, 1978 https://doi.org/10.1093/jn/108.2.211
  19. Rayman M. P.: The importance of selenium to human health, The Lancet, 356, 233-241, 2000 https://doi.org/10.1016/S0140-6736(00)02490-9
  20. Navarro- Alarcon M, M. C. Lopez- Martinez.: Essentiality of selenium in the human body: relationship with different diseases, Sci. of Tot. Environ, 249, 347-371, 2000 https://doi.org/10.1016/S0048-9697(99)00526-4
  21. Hyun-Ha Kim, Hye-Ran Yang, Hye-Young Kim: Selenium Status and Glutathione Peroxidase Activity in Korean Infants, Korean J Nutr, 44(2), 112-118, 2011 https://doi.org/10.4163/kjn.2011.44.2.112
  22. Marklund S., Marklund G.: Involvement of superoxide anon radical in the oxidaton of pyrogalloland a convenient assay for superoxide dismutase, Eur J Biochem, 47, 468, 1974
  23. Zimnitsky B., Bastina N.A., Devirz A.P.: The effect of the X-ray upon the fine structure of the parenchyma of the thyroid gland(1st article), Radiology, 27, 68, 1936. https://doi.org/10.1148/27.1.68
  24. Eckert C.T., Probstein J.B., Galinson S.: Radiation of the thyroid: An experimental study in radiosensitivity of the thyroid, Radiology, 29, 40, 1937 https://doi.org/10.1148/29.1.40
  25. Warrens S.: Effects of radiation on normal tissues, Arch. path., 35, 304, 1943
  26. Zimnitsky B., Bastina N.A., Devirz A.P.: The effect of the X-ray upon the fine structure of the parenchyma of the thyroid gland(1st article), Radiology, 27, 175, 1936 https://doi.org/10.1148/27.2.175