• Title/Summary/Keyword: Red pepper yield

Search Result 147, Processing Time 0.035 seconds

A Study to Determine the Consumptive Use of Water for Upland Crops (전작물의 필요수량 결정을 위한 연구)

  • 김철회;유시창;이근후;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.37-45
    • /
    • 1980
  • This study was carried out to investigate the consumptive use of water for red peppers and soy beans. The correlation between the soil moisture contents and the selected meteorological factors during the growing season was analyzed. Characteristics of the drought at Jinju, Yeosu, Gwangju, and Mokpo area were figured out in view of frequency analysis. The results obtained from this study could be used as a reasonable criteria for the estimation of the duty of water in the design of upland irrigation systems. Obtained results are summarized as follows: 1. Red peppers were grown at the three levels of soil moisture contents; 75 percent, 50 percent, and 25 percent, respectively. The red pepper grown at the 75 percent of soil moisture content showed the highest yield. The total evapotranspiration during the growing season from red peppers was 471. lmm, which was 86.6mm less than the pan evaporation. 2. The soy bean grown at 75 percent soil moisture content showed the highest yield, although there was no signicant difference in yields among treatments. The total evapotranspiration during the growing season from the soy bean was 342.8 mm, which was 119.2mm less than the pan evaporation. 3. Coefficients of consumptive use(k) and meteorological data are shown on Table-9. 4. The significant correlations between the evapotranspiration and the humidity and daily temperature range were observed. Results are shown on Table-11.. Evaporanspiration can be easily estimated from the humidity and daily temperature range by using the equation...... (1) Ept=4.808-0.041H+0.207T.......(1) where, Ept; evapotranspiration(mm/day) H ; humidity(%) T ; daily temperature range ($^{\circ}C$) 5. The variations of soil moisture content during the growing season at the soil depth of 5cm, 15cm, and 45cm are shown on Fig. 4~9. The results of the correlation analysis between the evapotranspiration from the crops and the soil moisture content are shown on Table-12. The evapotranspiration can be estimated from soil moisture content at the different depth of the soil by using the equation....... (2). Ept = 3.433 - 0. 364M1 +0. 359M$_2$- 0. 055M$_3$....... (2) where, Ept; evapotranspiration (mm/day) M1 soil moisture meter reading at 5cm depth M$_2$; " 15cm " M$_2$; " 40cm " 6. The estimated probab]e successive dry days in selected areas are shown on Table 13. Gumbel-Chow method was used to calculate the probable successive dry days. Further investigation are required to obtain the more detailed and reliable results.

  • PDF

Effects of Far-infrared Irradiance at Night on Quality of Sunlight Dried Red Pepper (Capsicum annuum L.) in Plastic Houses (비닐하우스 이용 고추 건조 시 야간 원적외선등 조사량이 품질에 미치는 영향)

  • Lee, Guang-Jae;Kim, Si-Dong;Yoon, Jung-Beom;Lee, Ki-Yeol;Choi, Kyu-Hong
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.819-826
    • /
    • 2014
  • This study was carried out to investigate the effects of night-time far-infrared irradiance quality of red pepper dried in greenhouses. This study involved 4 treatments: sunlight alone (control), or sunlight plus nightly far-infrared irradiation at $250W{\cdot}6.6m^{-2}$ ($250W{\cdot}6.6m^{-2}$), far-infrared irradiation at $250W{\cdot}3.3m^{-2}$ ($250W{\cdot}3.3m^{-2}$), or far-infrared irradiation $500W{\cdot}3.3m^{-2}$ ($500W{\cdot}3.3m^{-2}$). The drying periods were 12 days in $500W{\cdot}3.3m^{-2}$ and $250W{\cdot}3.3m^{-2}$, and 14 days in $250W{\cdot}6.6m^{-2}$, and 15 days in the control. The daytime temperature was same among the treatments. The lowest temperature was at $23.8^{\circ}C$ in control, and $29.5-37.2^{\circ}C$ in far-infrared irradiation treatments. The marketable yield was 7-14% higher in far-infrared irradiation treatments compared to the control. The rate of marketability was higher in far-infrared irradiation treatments (93.6-96.3%) than in the control (87.0-87.5%). The American Spice Trade Association (ASTA) value was greatest in the $250W{\cdot}3.3m^{-2}$ treatment, followed by $250W{\cdot}6.6m^{-2}$, then $500W{\cdot}3.3m^{-2}$, and finally the control. Capsaicinoid content showed no regular trend among the treatments. Our results provide an optimized method for reducing drying time of red pepper under sunlight, and improving the quality of dried red pepper.

Distribution of Microorganisms in Cheongyang Red Pepper Sausage and Effect of Central Temperature on Quality Characteristics of Sausage

  • Choi, Yun-Sang;Ku, Su-Kyung;Kim, Tae-Kyung;Park, Jong-Dae;Kim, Young-Chan;Kim, Hee-Ju;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.749-758
    • /
    • 2018
  • The objective of this study was to provide preliminary data for food industry by investigating the distribution of microorganisms in raw materials and sausage examining the effect of heating temperature on sausage quality. Total microbes in sausage ranged 2.21-3.11 Log CFU/g. Bacillus pumilus, B. licheniformis, Staphylococcus saprophyticus, and Enterococcus faecalis were detected on sausage. Total microbes in raw materials was 1.59-7.16 Log CFU/g. Different types of microorganisms were found depending on raw materials, with B. pumilus and B. subtilis were being detected in both raw materials and sausage. Total microbes in sausage after heating was in the range of 1.10-2.22 Log CFU/g, showing the trend of decrease in total microbe with increasing heating temperature, although the decrease was not significant. With increasing heating temperature, pH and hardness were also increased. The yield of sausage manufactured at $85^{\circ}C$ was 95.42% while that manufactured at $65^{\circ}C$ was 96.67%. Therefore, decreasing heating temperature during sausage production might increase yield and save energy without microbiological effect.

Occurrence of Virus Diseases on Major Crops in 2009 (2009년 우리나라 주요 작물 바이러스병 발생 상황)

  • Choi, Hong-Soo;Lee, Su-Heon;Kim, Mi-Kyeong;Kwak, Hae-Ryun;Kim, Jeong-Soo;Cho, Jeom-Deog;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Among the plant specimens requested from agricultural actual places of farmers, Agency of agricultural extension services and so forth for the diagnosis of plant virus diseases in 2009, the rate of crop types was 87.5% for vegetables, 4.0% for upland crops and 3.5% for orchids. In vegetables, the crops damaged severely by viral diseases were red pepper and tomato by the infection rate of 51.6% and 26.5%, orderly. Virus species occurring vegetables were 19 and the economically important viruses were Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), Tomato yellow leaf curl virus (TYLCV), Pepper mild mottle virus (PMMoV) with the infection rate of 33.2%, 16.9%, 16.1% and 7.4%, respectively. Rice stripe virus (RSV) occurred at the whole areas of west coast in Korea in 2009, and its incidence was 14.2% mainly on the susceptible cultivars and yield loss was estimated up to 50%. TYLCV was spread at 34 areas of Si and/or Gun, 22 areas in 2009 and 12 in 2008. Distribution of TSWV was expanded newly in 6 areas of Si and/or Gun including Gangryung, Gangwondo in 2009, and its occurrence areas were 23 Si and/or Gun after first incidence at Anyang area in 2004. Tomato bushy stunt virus (TBSV) was incited newly at Gimcheon area in 2009 with the infection rate of 65.2%, and its soil transmission rate was 55.0% in average.

Effects of Intercrops on Growth and Yield of Paeonia Lactiflora PALLAS. (간작물(間作物)이 작약(芍藥)의 생육(生育) 및 수양(收量)에 미치는 영향(影響))

  • Hwang, Hyung-Baek;Kim, Jae-Chul;Park, So-Deug;Chol, Boo-Sull;Lim, Joo-Rag
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.212-217
    • /
    • 1996
  • This study was carried out to select proper intercrops in peony cultivation because peo­ny is damaged easily by disease and cannot make proper income with it's single crop system, so it needs rational intercropping system to raise it's productivity and income. The results of this study are as follows. The kinds of soil nematodes were Meloidogyne sp, Pratyienchus sp, Aphelenchoides sp, Ditylenchus sp, Xiphinema sp, and damaging dominant nematode was Meloidogyne sp. The density of Meloidogyne sp wa suppressed remarkably in the combination of peony+sesame, and peony + job's tears. This study shows that sesame and job's tear were most resistant crops to the IvIeloi­dogyne sp. The quanity of herbaceous peony was the best in the combination of peony+red pepper. The results of income analysis per lOa for three years shows next conclusion. Peony+red pepper combination and peony+ sesame combination were most effective when it's compared with single cropping of peony (1,490 thousand won). But red pepper was damaged easily by soil nematode, therefore, sesame was the most stable and high yield crop as a intercrop in the cultivation of herbaceous peony.

  • PDF

The Effects of High Air Temperature and Waterlogging on the Growth and Physiological Responses of Hot Pepper (고온 및 침수에 의한 고추의 생육 및 생리적 반응에 미치는 영향)

  • Lee, Hee Ju;Park, Sung Tae;Kim, Sung Kyeom;Choi, Chang Sun;Lee, Sang Gyu
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study was conducted to investigate the effects of waterlogging on the net photosynthetic rate, root activity and fruit yield of hot pepper. Plants were grown in two greenhouses: extractor fans and side ventilators began to operate when the inside temperature reached $25^{\circ}C$ in one greenhouse and $35^{\circ}C$ in the other. Waterlogging treatments were performed 54 days after transplanting (when fruit setting at the second flower truss was complete). The plot in each greenhouse was divided into five sections, and each section was watered for 0, 12, 24, 48 or 72 h using drip irrigation. Plants under $25^{\circ}C$ and non - waterlogging treatment exhibited in the greatest growth among treatments. Plant growth generally decreased as the waterlogging period increased. The net photosynthetic rate was highest under non - waterlogging and $25^{\circ}C$ treatment and lowest under 72 h waterlogging and $25^{\circ}C$ treatment. The root activity decreased as the waterlogging period increased, except for plants under 72 h waterlogging treatment at $35^{\circ}C$. The number and weight of red pepper fruits per plant were highest under non - waterlogging treatment at $35^{\circ}C$. The greatest fruit yield was also observed under non - waterlogging treatment at $35^{\circ}C$, with production reaching 3,697 kg / 10a. At the appropriate temperature for hot pepper ($25^{\circ}C$), yields were reduced by 25 - 30% under 12, 24 and 48 h waterlogging treatment compared to non - waterlogging treatment. These results indicate that longer waterlogging periods reduce the growth, net photosynthetic rate, root activity and yields of hot pepper. However, the net photosynthetic rate and stomatal conductance of hot pepper plants grown under 72 h waterlogging treatment recovered nine days after growth under normal growth conditions.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.

Review of Disease Incidence of Major Crops in 2003 (2003년 농작물 병해 발생개황)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The year of 2003 was characterized as a cool humid year. Low temperature and frequent rains were continued during March to July, resulting in 1.6 times higher rainfalls and 32% less sunshine period compared to the average yean Due to 2003's climatic condition, rice blast, and bacterial leaf blight occurred severely. Higher rainfalls caused severe epidemic of phytophthora disease and, in case of red-pepper, 55% of cultivation acreage was devastated by the disease over the country. Besides, crop diseases which become severe under cool-humid conditions, such as gray mold, sclerotinia rot, downy mildew, increased significantly compared to the previous year. In fruit trees, brown spot of apple, and pear scab occurred severely causing much yield loss.

Isolation and Characterization of Feather Keratin-Degrading Bacteria and Plant Growth-Promoting Activity of Feather Hydrolysate (우모 케라틴 분해세균의 분리, 특성 및 우모 분해산물의 식물 생육촉진 효과)

  • Jeong, Jin-Ha;Lee, Na-Ri;Kim, Jeong-Do;Jeon, Young-Dong;Park, Ki-Hyun;Oh, Dong-Joo;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1307-1314
    • /
    • 2010
  • This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% $K_2HPO_4$, 0.06% $KH_2PO_4$, 0.05% NaCl and 0.01% $FeSO_4$ with an initial pH 8.0 at $30^{\circ}C$ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.

Evaluation of N2O Emissions by Nutrient Source in Soybean and Pepper Fields (콩과 고추재배지에서 양분 공급원별 N2O 배출량 평가)

  • Kim, Gun-Yeob;Lee, Sun-Il;Lee, Jong-Sik;Jeong, Hyun-Cheol;Choi, Eun-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.680-686
    • /
    • 2018
  • Nitrogen fertilizers, hairy vetch, and slow-release complex fertilizers were applied to the soil during the cultivation of crops. The impact of these factors on $N_2O$ emission was quantitatively assessed and the GHGs reduction effect comprehensively evaluated. Among the three factors, the significant factors affecting $N_2O$ emission were mineral nitrogen>soil moisture>temperature. Yield and fertilizer utilization efficiency were highest in the slow-release complex fertilizer treatment. There was no significant difference in $N_2O$ emissions between the slow-release complex fertilizer treatments and the NPK+hairy vetch treatments. Comprehensive results showed that slow-release complex fertilizers treatment has high yield and fertilizer utilization efficiency but low $N_2O$ emission.