• Title/Summary/Keyword: Red compound

Search Result 345, Processing Time 0.024 seconds

The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

  • Choi, Hak Joo;Kim, Eun A;Kim, Dong Hee;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 2014
  • A ${\beta}$-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, $F_2$, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The production of ginsenoside $F_2$ and compound K was time-dependent and thought to proceed by the transformation pathway of: red ginseng extract ${\rightarrow}Rd{\rightarrow}F_2{\rightarrow}$ compound K. The optimum incubation time and concentration of red ginseng extract for the production of compound K was 96 hr and 4.5% (w/v), respectively.

Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings

  • Choi, Min-Koo;Jin, Sojeong;Jeon, Ji-Hyeon;Kang, Woo Youl;Seong, Sook Jin;Yoon, Young-Ran;Han, Yong-Hae;Song, Im-Sook
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • Background: We investigated the tolerability and pharmacokinetic properties of various ginsenosides, including Rb1, Rb2, Rc, Rd, and compound K, after single or multiple administrations of red ginseng extract in human beings. Methods: Red ginseng extract (dried ginseng > 60%) was administered once and repeatedly for 15 days to 15 healthy Korean people. After single and repeated administration of red ginsengextract, blood sample collection, measurement of blood pressure and body temperature, and routine laboratory test were conducted over 48-h test periods. Results: Repeated administration of high-dose red ginseng for 15 days was well tolerated and did not produce significant changes in body temperature or blood pressure. The plasma concentrations of Rb1, Rb2, and Rc were stable and showed similar area under the plasma concentration-time curve (AUC) values after 15 days of repeated administration. Their AUC values after repeated administration of red ginseng extract for 15 days accumulated 4.5- to 6.7-fold compared with single-dose AUC. However, the plasma concentrations of Rd and compound K showed large interindividual variations but correlated well between AUC of Rd and compound K. Compound K did not accumulate after 15 days of repeated administration of red ginseng extract. Conclusion: A good correlation between the AUC values of Rd and compound K might be the result of intestinal biotransformation of Rb1, Rb2, and Rc to Rd and subsequently to compound K, rather than the intestinal permeability of these ginsenosides. A strategy to increase biotransformation or reduce metabolic intersubject variability may increase the plasma concentrations of Rd and compound K.

Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract

  • Kim, Hyung-Ki
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.451-456
    • /
    • 2013
  • Compound K is a major metabolite of ginsenoside Rb1, which has various pharmacological activities in vivo and in vitro. However, previous studies have focused on the pharmacokinetics of a single metabolite or the parent compound and have not described the pharmacokinetics of both compounds in humans. To investigate the pharmacokinetics of ginsenoside Rb1 and compound K, we performed an open-label, single-oral dose pharmacokinetic study using Korean Red Ginseng extract. We enrolled 10 healthy Korean male volunteers in this study. Serial blood samples were collected during 36 h after Korean Red Ginseng extract administration to determine plasma concentrations of ginsenoside Rb1 and compound K. The mean maximum plasma concentration of compound K was $8.35{\pm}3.19$ ng/mL, which was significantly higher than that of ginsenoside Rb1 ($3.94{\pm}1.97$ ng/mL). The half-life of compound K was 7 times shorter than that of ginsenoside Rb1. These results suggest that the pharmacokinetics, especially absorption, of compound K are not influenced by the pharmacokinetics of its parent compound, except the time to reach the maximum plasma concentration The delayed absorption of compound K support the evidence that the intestinal microflora play an important role in the transformation of ginsenoside Rb1 to compound K.

Inhibititory Effect of Water- or petroleum Ether-extract from Red Ginseng on Serotonin Release from Human Platelets (Comparative Study Between 6-year and 4-year Old of Red Ginseng) (사람 혈소판으로부터 serotonin 방출반응 대한 홍삼의 물 추출물 및 petroleum ether 추출물의 억제 효과)

  • 박화진;고성룡
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.140-146
    • /
    • 1998
  • It was founded that an X-compound is contained in extracts from the root of old red ginseng (6RG) compared with that from the root of 4-year old red ginseng(4RG). Both water extract and petroleum ether extract (PEII) from 6RG or 4RG inhibited the release of [$^{3}H$]-serotonin induced by platelet activating factor (PAF; 40 ng/ml). Water extract and PEll from 6RG Inhibited potently PAF-induced [$^{3}H$]-serotonin release compared with those from 4RG. X-compound out of both water extract and PEll from 6RG inhibited the release of [$^{3}H$]-serotonin inducted by collagen (100 $\mu\textrm{g}$/ml) or thrombin(20 U/ml). X-compound had a synergistic effect with water extract from 4RG on collagen-and thrombin-induced [3H] -serotonin release out of human platelets. The concentration(IC50) of X-compound that require to inhibit 50% of [$^{3}H$]-serotonin-release was 3.25 $\mu\textrm{g}$/ml, and it is inferred that maximum concentration of X-compound that inhibits the release of [$^{3}H$]-serotonin is 10 $\mu\textrm{g}$/ml. Because thrombosis is resulted mainly from the irreversible aggregations which are intimately related with the serotonin release and migraine is also caused when serotonin is released, it is inferred that water extract, PEII and X-compound from 6RG have antithrombosis and antimigrainous functions by inhibiting the release of serotonin from human platelets.

  • PDF

Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K

  • Yayeh, Taddesse;Yun, Kyunghwa;Jang, Soyong;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.445-452
    • /
    • 2016
  • Background: Red ginseng and ginsenosides have shown plethoric effects against various ailments. However, little is known regarding the effect of red ginseng on morphine-induced dependence and tolerance. We therefore investigated the effect of red ginseng extract (RGE) and biotransformed ginsenosides Rh2, Rg3, and compound K on morphine-induced dependence in mice and rats. Methods: While mice were pretreated with RGE and then morphine was injected intraperitoneally, rats were infused with ginsenosides and morphine intracranially for 7 days. Naloxone-induced morphine withdrawal syndrome was estimated and conditioned place preference test was performed for physical and psychological dependence, respectively. Western blotting was used to measure protein expressions. Results: Whereas RGE inhibited the number of naloxone-precipitated jumps and reduced conditioned place preference score, it restored the level of glutathione in mice. Likewise, ginsenosides Rh2, Rg3, and compound K attenuated morphine-dependent behavioral patterns such as teeth chattering, grooming, wet-dog shake, and escape behavior in rats. Moreover, activated N-methyl-D-aspartate acid receptor subunit 1 and extracellular signal-regulated kinase in the frontal cortex of rats, and cultured cortical neurons from mice were downregulated by ginsenosides Rh2, Rg3, and compound K despite their differential effects. Conclusion: RGE and biotransformed ginsenosides could be considered as potential therapeutic agents against morphine-induced dependence.

Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

  • Zhou, Ying;Yang, Zhenming;Gao, Lingling;Liu, Wen;Liu, Rongkun;Zhao, Junting;You, Jiangfeng
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.307-315
    • /
    • 2017
  • Background: Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). Methods: To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Results: Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of $H_2O_2$ and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of $\text\tiny L$-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

Biotransformation of Ginseng Extract to Cytotoxic Compound K and Ginsenoside $Rh_2$ by Human Intestinal Bacteria

  • Bae, Eun-Ah;Choo, Min-Kyung;Lee, Young-Churl;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.347-352
    • /
    • 2004
  • When saponin extracts of dried ginseng and red ginseng were anaerobically incubated with human intestinal microflora, these extracts were metabolized to compound K and ginsenoside $Rh_2$, respectively. However, when these extracts were incubated with commercial lactic acid bacteria, these did not metabolize these ginsenosides to compound K or ginsenoside $Rh_2$. Among some intestinal bacteria isolated from human feces, Bacteroides C-35 and C-36 transformed these saponin extracts to compound K and ginsenoside $Rh_2$, respectively. These bacteria also transformed water extracts of dried ginseng and red ginseng to compound K and ginsenoside $Rh_2$, respectively, similarly with that of the saponin extracts. Among transformed ginsenosides, compound K and 20(S)-ginsenoside $Rh_2$ exhibited the most potent cyotoxicity against tumor cells.

Mono-granular Compound Fertilizer Acting Slow Release for the Crops Under Vinyl Mulching Cultivation -II. Effect of newly developed compound fertilizer on red pepper (비닐멀칭 작물재배용(作物栽培用) 지효성(遲效性) 전용복비(專用複肥) 개발(開發) -II. 고추 전용복비(專用複肥)의 비효시험(肥效試驗))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Song, Jeong-Seb
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.217-221
    • /
    • 1987
  • Two trial products of monogranular compound fertilizer for red pepper under vinyl mulching cultivatin were made using the principal sources of urea, diammonium phosphate and muriate of potash in combination with fillers of treated human wastes (product I) and zeolite (Product II). A field experiment was carried out to evaluate their effects on red pepper and the results obtained were as follows. Red pepper plant growth and total red fruit yields in the trial products of one time basal application were better and higher than those of NPK split application of contrl plot. The increases of yield in the trial products might be due to steady supply of nutrients for the entire growing period. Therefore, one time basal dressing of a developed monogranular compound fertilizer for red pepper was applicable under vinyl mulching cultivation.

  • PDF

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Protective Effect of Fermented Red Ginseng on a Transient Focal Ischemic Rats

  • Bae, Eun-Ah;Hyun, Yang-Jin;Choo, Min-Kyung;Oh, Jin-Kyung;Ryu, Jong-Hoon;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1136-1140
    • /
    • 2004
  • Red ginseng and fermented red ginseng were prepared, and their composition of ginsenosides and antiischemic effect were investigated. When ginseng was steamed at 98-$100{\circ}C$ for 4h and dried for 5h at $60{\circ}C$, and extracted with alcohol, its main components were ginsenoside $Rg_3$ > ginsenoside $Rg_1$> ginsenoside $Rg_2$. When the ginseng was suspended in water and fermented for 5 days by previously cultured Bifidobacterium H-1 and freeze-dried (fermented red ginseng), its main components were compound K > ginsenoside $Rg_3{\geq}$ ginsenoside $Rg_2$. Orally administered red ginseng extract did not protect ischemia-reperfusion brain injury. However, fermented red ginseng significantly protected ischemica-reperfusion brain injury. These results suggest that ginsenoside Rh2 and compound K, which was found to be at a higher content in fermented red ginseng than red ginseng, may improve ischemic brain injury.