• Title/Summary/Keyword: Red OLED

Search Result 120, Processing Time 0.036 seconds

White Organic Light-Emitting Diodes Using DCJTB-Doped 24MeSAlq as a New Hole-Blocking Layer (새로운 정공차폐 층 (Hole blocking layer)으로 DCJTB 도핑된 24MeSAlq를 이용한 백색유기발광다이오드)

  • Kim, Mi-Suk;Lim, Jong-Tae;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.231-234
    • /
    • 2006
  • To obtain balanced white-emission and high efficiency of the organic light-emitting diodes (OLEDs), a deep blue emitter made of N,N'-diphenyl-N,N'-bis(1-naphthyl)- (1,1'-biphenyl)-4,4'-diamine (NPB) emitter and a new red emitter made of the Bis(2,4 -dimethyl-8-quinolinolato)(triphenylsilanolato)aluminum(III) (24MeSAlq) doped with red fluorescent 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H -pyran (DCJTB) were used and the device was tuned by varying the thickness of the DCJTB-doped 24MeSAlq and $Alq_3$. For the white OLED with 10 nm thickness DCJTB (0.5%) doped 24MeSAlq and 45 nm thick $Alq_3$, the maximum luminance of about 29,700 $Cd/m^2$ could be obtained at 14.8 V. Also, Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.28) at about 100 $Cd/m^2$, which is very close to white light equi-energy point (0.33, 0.33), could be obtained.

A Study on the High-Efficiency Red OLEDs using Phosphorescent Materials (인광재료를 이용한 고효율 적색 유기발광 다이오드에 관한 연구)

  • Shim, Ju-Yong;Jeon, Hyeon-Seong;Cho, Jae-Young;Jung, Jin-Ha;Yoon, Seok-Beom;Kang, Myung-Goo;Oh, Hwan-Sool
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.428-429
    • /
    • 2006
  • In this thesis, verifies electrical-optical characteristics of phosphorescent materials. basic structure of fabricating devices is glass/ITO/$\alpha$-NPD($300{\AA}$)/CBP:Guest($300{\AA}$)/BCP($80{\AA}$)/$Alq_3(100{\AA})$/Al($1000{\AA}$). In efficiency, fabrication of organic light emitting diodes using $Ir(btp)_2acac$ phosphorescent material is external quantum efficiency 0.268% as doping concentration 3%. At CIE coordinates, phosphorescent material $Ir(btp)_2acac$ following materials moves high purity red color(x=0.6686, y=0.3243). The brightness shows $285cd/cm^2$.

  • PDF

Tetra-Chromatic White Phosphorescent Organic Light-emitting Diodes with an External Color Tuning Layer

  • Chang, Chi-Sheng;Liu, Po-Tsun;Ho, Meng-Huan;Chen, Chin-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.477-480
    • /
    • 2008
  • A highly efficient white phosphorescent OLED with a "tetra-chromatic" emission was fabricated by using an external color tuning layer (ECTL) which is composed of a layer of greenish yellow organic dye dispersed in PMMA on the outside of the glass. The ECTL combining with a lower red dopant concentration in the device has been found to improve the efficiency of a conventional WOLED by more than 27%.

  • PDF

Novel host and electron blocking materials for efficient and long lifetime phosphorescent OLEDs

  • Vestweber, Horst;Gerhard, Anja;Kaiser, Joachim;Heil, Holger;Kroeber, Jonas;Pflumm, Christof;Stoessel, Philipp;Joosten, Dominik;Buesing, Arne;Fortte, Rocco;Parham, Amir;Boehm, Edgar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.925-927
    • /
    • 2008
  • In order to improve the performance in green phosphorescent OLED devices, Merck has developed novel host and electron blocking materials. The newly developed host materials improve the device lifetime by a factor of 3. The newly developed electron blocking materials having not only electron but also exciton barrier properties increase the efficiency of the device by a factor of 1.4. Comparable results were achieved in phosphorescent red systems with further host materials.

  • PDF

Fabrication of Red, Green, and Blue Organic Light-emitting Diodes using m-MTDATA as a Common Hole-injection Layer

  • Seol, Ji-Youn;Yeo, Seok-Ki;Song, Min-Chul;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1408-1409
    • /
    • 2005
  • Organic light-emitting diodes (OLEDs) of metalsemiconductor-metal (MSM) structure have been fabricated by using m-MTDATA [4,4',4"-tris (3-methylphenylphenylamino) triphenylamine] as a hole-injection layer (HIL). The m-MTDATA is shown to be an effective hole-injecting material for the OLED, in that the insertion of m-MTDATA greatly reduces the roughness of anode surface and improves the device performance.

  • PDF

Characteristics of Organic Light Emitting diodes with DCM derivatives (DCM-A 유도체를 이용한 유기 광전 변환 소자의 특성)

  • Mun, Soo-San;Lee, An-Sung;Han, Mi-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.168-168
    • /
    • 2010
  • DCM derivatives were newly synthesized. The OLEDs with a DCM-A as an emitting layer was fabricated and analyzed their opto-electrical properties. The structures of OLEDs were I) ITO/DCM-A/Al, II) ITO/-NPD/DCM-A/LiF/Al, and III) ITO/-NPD/DCM-A/Alq3/LiF/Al. The EL peak of the DCM-A shows the red emission in the range of 700 nm. The structure I) shows that 1050 nW/cm2 at 510 mA/cm2. The structure II) shows that takes the most excellent luminance about 39,000 nW/cm2 at 290 mA/cm2. The EL structure ill shows luminance about 13,000 nW/cm2 at 6 mA/cm2.

  • PDF

Red emission organic light-emitting diode with electrochemically deposited PANI-CSA layer

  • Kim, Ju-Seung;Kim, Dae-Jung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.81-84
    • /
    • 2003
  • Conductive polyaniline(PANI)-camphosulfonic acid (CSA) film applied as a hole injection layer in ITO/PANI/P3HT/LiF/Al device. In the AFM images, electrochemically polymerized PANI-CSA films have the small particles and smooth sufficient for application as hole injection layer. By insertion of PANI-CSA buffer layer, the turn on voltage of ITO/PANI/P3HT/LiF/Al device lowed by 3V, whereas that of ITO/P3HT/LiF/Al device shows 5V.

  • PDF

Synthesis of N-Alkylcarbazole-3-Vinylene-2-Methyl-4-Dicyanomethylene-4H-Pyran (적색발광재료용 N-알킬카르바졸-3-비닐렌-2-메틸-4-디시아노메틸렌-4H-피란의 합성)

  • Chung, Pyung Jin;Sung, Jin Hee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 2009
  • N-Alkylcarbazole-3-vinylene-2-methyl-4-dicyanomethylene-4H-pyran derivatives were synthesized by dehydration, $S_N2$, Vilsmeier, and Knoevenagel condensation. They are red-emitting materials for organic light emitting device (OLED) composed of electron donor of N-alkylcabazole-3-vinylene groups and electron acceptor of 2-methyl-4-dicyanomethylene-4H-pyran groups by a conjugated structure. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by exitation spectra and emission spectra, respectively.

Novel structure for a full-color AMOLED using a blue common layer (BCL)

  • Kim, Mu-Hyun;Chin, Byung-Doo;Suh, Min-Chul;Yang, Nam-Chul;Song, Myung-Won;Lee, Jae-Ho;Kang, Tae-Min;Lee, Seong-Taek;Kim, Hye-Dong;Park, Kang-Sung;Oh, Jun-Sik;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.797-798
    • /
    • 2005
  • We report a novel structure for a full-color AMOLED (Active Matrix Organic Light Emitting Diode) eliminating the patterning process of a blue emitting layer. The patterning of the three primary colors, RGB, is a key technology in the OLED fabrication process. Conventional full color AMOLED containing RGB layers includes the three opportunities of the defects to make an accurate position and fine resolution using various technologies such as fine metal mask, ink-jet printing and laser-induced transfer system. We can skip the blue patterning step by simply stacking the blue layer as a common layer to the whole active area after pixelizing two primary colors, RG, in the conventional small molecular OLED structure. The red and green pixel showed equivalent performances without any contribution of the blue emission.

  • PDF

Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes (청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.