• Title/Summary/Keyword: Recycling waste oil

Search Result 83, Processing Time 0.025 seconds

A Study on the Collection and Transportation Processes of Used Oil Containers by Integrated Management System (통합관리 시스템을 이용한 윤활유 페빈용기 회수 ㆍ 처리에 관한 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • Used motor oil contains pollutants, including organic chemicals and meta]s. When disposed of improperly - in the trash, on the ground or in a sewer system - the pollutants may reach rivers, lakes or the ground water. Thus, all the waste oil products such as waste motor oil, waste oil container, and waste oil filter should be collected and transported for recycling or disposal by waste oil regulations. Because waste oil container is a valuable resource, waste oil containers can be reused, cleaned, buried, and burned for recycling processes. This paper presents the integrated management system that may increase the efficiency and productivity for collecting and reprocessing waste oil containers such as steel can and plastic container. The integrated management system consists of collection and transportation process management system and confirmation and certification process management system for waste oil containers.

Oil Recovery through Wasts Tire/Wasts Oil Pyrolysis (폐타이어/폐유의 복합 열분해에 의한 오일화 공정개발 연구)

  • 김동찬;신대현;정수현
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.12-15
    • /
    • 1995
  • In this paper, some representative waste tire pyrolysis were investigated together with the analysis of the problems associated with the commercialization of various waste tire treatment technologies. Also, R & D results on recovering the oil from the pyrolysis of waste tires, when waste oil was used as a heating medium, were summarized in this study. Experimental results show that the present pyrolysis process has both lower pyrolytic temperature and higher pyrolysis rate than usual one and that the quality of the product oil and residue obtained was relatively even with large availability.

  • PDF

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

Comparison of Waste-Plastic Recycling Methods for Environmental Assessment (환경성 평가를 위한 폐플라스틱 재활용 방법들의 비교)

  • Park, Chan-Hyuk;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 2006
  • In the present work, life cycle assessments (LCA) of various waste-plastic recycling methods (material recycling, refused derived fuel (RDF), recycling on furnace, and pyrolytic oil production) were carried out to investigate their impacts on the environment. Six types of impacts were considered. While the impact on global warming was found to be significant, the impact on others were negligible. The impact values on the global warming caused by the material recycling, RDF, and the recycling on furnace were negative, which implied that their impacts could be noticeably reduced when waste-plastic are used as an alternative to newly drawn plastics. The pyrolytic oil production, however, showed positive value, which may be due to the carbon dioxide produced during electric power generation. The pyrolytic oil production had the largest impact on the ozone layer destruction, which was due to ozone depleting substances produced from the process itself. These results can be used as a useful data for the enhancement of waste-plastic recycling.

  • PDF

A Study on Recycling of Waste Tire (폐타이어 재 자원화를 위한 연구)

  • 이석일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

A Statistical Analysis of Recycling Cost for Waste Home Appliances

  • Esher Hsu;Kuo, Chen-Ming
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • On July 5, 1997, environmental Protection Administration of Taiwan publicized the recycling regulation of waste home appliances that include four items, namely, television, refrigerator, washing machine, and air conditioner. It is believed that this regulation pioneers the law enforcement of waste home appliances in the world. To comply with tile policy, several contemporary waste disposal plants specialized in waste home appliances were established according to a follow-up technical specification oil the waste treatment facilities and methodology. Therefore, the traditional dismantling facilities were substituted and waste collection routes were altered as well accordingly. This study investigates the collection and recycling costs of waste home appliances in accordance with these newly established routes and facilities, respectively. Cost survey was conducted among collectors and recycling plants of waste home appliances; consequently, tire collection and recycling costs were analyzed, correspondingly. Results show that the recycling costs of waste home appliances were much higher than that of other waste items. Since the market share of recycled materials is lacking, these waste recycling plants of home appliances can only survive under the subsidy of EPA in Taiwan. Due to some arduous problems, the subsidiary system has already caused serious financial unbalance for a foundation under EPA of Taiwan, which associated with waste recycling in Taiwan.

  • PDF

Physicochemical Characteristics of Waste Catalyst and Their In-Process Products from Recycling (폐촉매 및 재활용 중간생성물의 물리화학적 특성 평가)

  • Park, Joon-Seok;Jeun, Byung-Do;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.150-158
    • /
    • 2011
  • This research was conducted to estimate the physicochemical characteristics of waste catalyst and its in-process product from recycling and to suggest fundamental data for religious systems such as quality standards. Mo and V contents were increased from the waste catalyst to calcinated material and oxidized material. In the results of a heavy metals leaching test, Pb was not detected in any catalyst, calcinated and oxidized materials. Cu was not detected in the catalyst. However, it was detected in ${\leq}$1.16 mg/l for calcinated material and in 1.34~13.73 mg/l for $MoO_3$ oxidezed material. Concentrations in recycling in-process products (calcinated and oxidized materials) were higher than those of waste catalyst. Oil content of catalyst waste ranged from 0.01-14.03 wt%. Oil contents of calcinated and oxidized materials were greatly decreased compared to the catalyst waste. Carbon and sulfur contents as chemical poisoning material of catalyst waste ranged from 0.33-76.08 wt% and 5.00-22.00 wt%, respectively. The carbon contents of calcinated and oxidized materials showed below 20 wt%. The sulfur content showed below 8wt% for calcinated material and below 0.22 wt% for oxidized material.

Environmental Impact Evaluation of the Waste Cooking Oil Recycling Products (폐식용유 재활용 제품의 환경성 평가)

  • Kim, Tae-Suk;Kim, Dong-Gyue;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.516-525
    • /
    • 2015
  • In this study, Life Cycle Assessment(LCA) was applied to the production processes of waste cooking oil recycling products. Recycling products as defined in the Law of Saving of Resources and Recycling Promotion are biodiesel and soap. Weighting result of biodiesel production process showed that the most significant impact potential was abiotic resource depletion(84.17%) followed by global warming(13.93%). In the case of the soap, the most significant impact potential was also abiotic resource depletion(58.59%) followed by global warming(33.71%). In terms of the whole system of the biodiesel production process, methanol showed the largest environmental impact potential(87.35%). While in the case of the soap, sodium chloride showed the largest environmental impact potential(99.99%). This study suggests that there should be improvement of the methanol recovery system in the biodiesel production process and also appropriate use of the major environmental impact materials in both processes.

Recycling Technologies of Waste Lubricating Oils and Their Promotion Policies in Korea and Foreign Countries (국내외 폐윤활유의 재활용기술 현황 및 재활용 촉진대책 조사분석)

  • Bae, Jae-Heum;Kwon, Sun-Dae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.113-127
    • /
    • 2006
  • Waste lubricating oil(WLO)s have been recycled as energy source through direct fuel in cement kilns and fossil power plants, or as fuel oils, or re-refined lubricating base oils. In our country, they have been recycled as low grade fuel oil through chemical treatment process. In 2003, extended producer responsibility (EPR) system was adopted from deposit system on sale of lubricating oils in order to promote their recycleing rate. However, our recycling rate of WLOs have been stagnant(below 70%) for last 5 years. And there has been no research work on recycling of WLOs as re-refined base oil until now in this country. Stabilization technology of thermally cracked oils to reduce tar and malodor and to improve their color for production of high grade fuel oil, and a novel process production of high grade re-refined lubricating base oil from WLOs have been developed and commercialized recently in Canada and U.S.A., respectively. Several countries like Australia, Italy, Germany and U.S.A., etc. are encouraging recycling companies to recycle WLOs as re-refined lubricating oil by giving greater subsidies or benefits compared to other recycling methods. They also adopt a policy to purchase re-refined lubricating oil preferentially in the federal or local governments and to recommend consumers to purchase it willingly. Based on the facts that several advanced countries have adopted a policy to recycle WLOs as re-refined base oil for saving of petroleum resource and reduction of environmental pollution, it is right time to be considered that our present policy for recycling of WLOs should be reevaluated and the new policy of their environmental-friendly and sustainable recycling should be established.

  • PDF

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.