• Title/Summary/Keyword: Recycling substrate

Search Result 102, Processing Time 0.024 seconds

Aerobic Liquid Fermentation of Residual Food Waste by Thermophilic Bacteria (고온세균을 이용한 남은 음식물의 호기적 액상발효)

  • Ryu, Seung-Yong;Park, Myoung-Ju;Kim, So-Young;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.126-131
    • /
    • 2002
  • For the probiotic feed production from residual food waste, aerobic liquid fermentation was conducted by thermophilic bacteria. 11 Strains of bacteria were isolated from several soil sources and residual food waste. Screening was carried by shaking incubator for the separation of thermophilic strain at $55^{\circ}C$. The isolated strains were tested for enzyme activities such as ${\alpha}$-amylase and protease. 6 Bacterial strains were chosen and were adapted by repeated fermentation processes in food waste substrate. The viable cell count of them at final fermentation stages were shown as $3-7{\times}10^9/ml$ in 2L-jar fermenter. Among them B3, B6 showed higher enzyme activity. By the mixed fermentation of B3, B6 and Bacillus stearothermophilus, the highest viable cell count reached to $1.4{\times}10^{10}/ml$ in 8 hours.

  • PDF

Aerobic Liquid Fermentation of Food Wastes by Using Yeast (효모에 의한 남은 음식물의 호기성 액상발효)

  • Lee, Ki-Young;Yu, Sung Jin;Yu, Seung Yeung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.147-152
    • /
    • 2000
  • For the probiotic feed production from residual food waste by using the yeast Kluyveromyces marxianus, aerobic liquid fermentation was attempted at $35^{\circ}C$. After grinding finely, optimal fermentation conditions of the substrate was investigated in shaking incubator. By controlling water content yeast growth was studied at each different solid content of 5, 10 and 15% respectively. The most active growth of the yeast was shown at 10%. For the stimulation of the cell growth, mixed culture with Aspersillus oryzae was conducted in a 2 litre-jar fermenter. As the results, the yeast growth rate was increased, but the maximum viable cell count amounted was slightly higher as $3.5{\times}10^9/ml$ than single culture.

  • PDF

Changes of Physico-chemical Properties during the Composting of Korean Food Waste (음식물찌꺼기를 이용한 퇴비의 부숙과정중 이화학적 특성의 변화)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • This study was conducted to estimate the stabilization degree of compost which made from Korean food wastes. To make the compost, food wastes were mixed with dried paper sludge, sawdust and the rotten wood waste which had cultivated mushrooms, and then mixture was composted in $1.1m^3$ of chamber which installed with the blower for maintaining the aerobic condition. Y value, EC and pH were changed remarkably for the early stage of composting. These changes showed that the compost of food wastes could be stabilized within 30~35 days and that the substrate, food wastes, can be easily used as energy source for microorganisms. Although these phyico-chemical properties indicated that food wastes could be composted within 30 days during the composting, the temperature of pile maintained over $50^{\circ}C$ for 80 days, and C/N ratio decreased gradually for over 50 days. In conclusion, more than 50 days were required to stabilize the compost of food wastes.

  • PDF

Effect of High Concentration of Sulfate on Anaerobic Digestion of Propionic Acid Using an Upflow Anaerobic Sludge Blanket (상향류 혐기성 블랭킷 반응조를 이용한 프로피온산의 혐기성 처리시 고농도 황산염의 영향)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • Two UASB reactors were operated to investigate the effect of high concentration of sulfate on anaerobic digestion of propionate using an upflow anaerobic sludge blanket (UASB) reactor. An organic loading rate of $1.2kg\;COD/m^3{\cdot}d$ and a hydraulic retention time of 1.6 d were maintained during this study. In the absence of sulfate, the UASB reactor achieved about 95% removal of chemical oxygen demand whereas in the presence of $2,000\;SO_4^{2-}mg/L$, the COD removal rate decreased to 83% due probably to the inhibition of dissolved sulfide inhibition. Interactions between the methane producing bacteria (MPB) and sulfate reducing bacteria (SRB) were measured to investigate the competition between MPB and SRB. The MPB consumed average 58% of the available electron donors at $COD/SO_4^{2-}$ ratio of 1. Propionate was consumed mainly by SRB, converting sulfate into sulfide and suppressing the methane production. The specific methanogenic activity (SMA) using acetate and propionate increased as microorganism acclimated to the substrate.

  • PDF

A Study on the Application of Temperature Feedback Aeration Method for Composting of Municipal Solid Wastes (효율적 퇴비화를 위한 온도제어 공기공급방식의 적용에 관한 연구)

  • Kim, Byung-Tae;Kim, Jung-Wk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.3-18
    • /
    • 1994
  • Municipal solid wastes in Korea have physical and chemical properties suitable for composting, but composting has had little practical use in solid waste disposal until now because of a lack of understanding of process control. For practical use of composting, process control must be capable of maintaining good product quality while large quantities are composted in a short period of time. Ventilation control to maintain optimum temperature(Temperature Feedback Aeration Method) is reported to be convenient to operate. The purpose of this study is to analyze process efficiency and optimum temperature in the temperature feedback aeration method for composting of municipal solid wastes. The results of this study show that degradation and drying of substrate in the temperature feedback aeration method are higher than those in the constant aeration method. And the optimum temperature range for composting of solid wastes appears to be $50{\sim}54^{\circ}C$.

  • PDF

The Recycling of Enokitake Cultural Waste and the Potentiality of 2nd Flush for Enokitake Production

  • Chai, Jung-Ki;Lee, Sung-Jin;Kim, Young-Ju;Kim, You-i;Kim, Nam-Hee
    • Plant Resources
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2000
  • The recycling method of enokitake cultural waste and the potentiality of second flush for enokitake were determined, because this fungus is not as prolific as the more commonly cultivated white rot fungi in the conversion of sawdust to mycelial mass. The mycelial growth of F. velutipes on several substrates, variously treated with rice bran was promoted at ratios of 10-20% (w/w) on all substrates, but suppressed at above ratios, although some difference was there. The mycelial densities generally increased correlated to the supplementation contents of rice bran. It could be concluded that F. velutipes preferred mild acidic to acidic conditions for mycelial growth, considering that the mycelial growth rate was highest on waste of pH 6.01, treated with 0.1 % Ca(OH)$_2$ and on populus mixed waste of pH 6.02, non treated. The ranges of substrate bulk densities, which was pertinent for mycelial linear growth were from B.D. (g/cc) 0.17 to 0.23 on waste and populus mixed waste all. The pertinent contents of rice bran supplementation in bottle cultivation was from 20 to 30% on waste and 20% on populus mixed waste, considering the requried duration for pinheading and fruiting yields. Standard bulk density for filling and utilizing the waste and populus mixed waste for commercial f. velutipes cultivation were B.D.(g/cc) 0.19 ~ 0.23, and 0.23~ 0.25, which could be conversed to 510~ 540g/900m1 and 520~ 570g/900m1, respectively, The second flush of F. velutipes was tried and the re-inoculation by sawdust and liquid spawn showed somewhat good results, indicating the potentiality of second crop and suggesting further research for it.

  • PDF

Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials (상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響))

  • Lee, Jae-O;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The room-temperature electrodeposition of metallic lithium was investigated from ionic liquid, 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) with lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) as a lithium source. Cyclic voltammograms on gold working electrode showed the possibility of the electrodeposition of metallic lithium, and the reduction current on a gold electrode was higher than the value on platinum and copper. The metallic lithium could be electrodeposited on the gold electrode under potentiostatic condition at -2.4 V (vs. Pt-QRE) and was confirmed by analytical techniques including XRD and SEM-EDS. The dendrite-typed electrodeposits were composed of a metallic lithium and a alloy with gold substrate. And any impurity could be detected except for trace oxygen introduced during handling for the analyses.

Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation (ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • This study was conducted to evaluate the performance of methane fermentation from effluent of hydrogen fermentation reactor in anaerobic baffled reactor (ABR) and anaerobic sequencing batch reactor (ASBR). Two reactors were operated at organic loading rate of $1.0kg\;COD/m^3{\cdot}d$ and hydraulic retention time (HRT) of 20 day. Methane production rates of ABR and ASBR for start-up periods were 0.04 L/L/d and 0.19 L/L/d, respectively, whereas maximum methane production rates of ABR and ASBR were 0.25 L/L/d and 0.31 L/L/d, respectively. Removal rates of chemical oxygen demand (COD) in ABR and ASBR for start-up periods were 89% and 92%, respectively. After startup periods, removal rates of COD and volatile solids (VS) in ABR and ASBR were maintained over 90%. The specific methanogenic activity (SMA) increased as microorganism acclimated to the substrate.

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.