• Title/Summary/Keyword: Recycling of Resources Due

Search Result 405, Processing Time 0.021 seconds

Overview for Coffee Grounds Recycling Technology and Future Concerns (커피 추출 폐기물 재활용 현황과 기술 동향 분석)

  • Hong, Hyun Seon;Kim, Yuli;Oh, Min Joo;Lee, Yu Mi;Lee, Hye Ji;Cha, Eun Seo
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.587-599
    • /
    • 2018
  • The coffee grounds generated during the coffee extraction process contain several resources, but the technology for their recycling has not been commercialized yet, causing various environmental problems. Due to the recent increase in coffee consumption worldwide, the amount of coffee grounds produced has been continuously increasing, reaching more than 750 million tons. In Korea, about 120,000 tons of coffee waste are annually generated; however, most of them are landfilled or incinerated. Although there is still a shortage of coffee waste recycling technologies compared to the amount of coffee grounds produced, various recycling approaches are being actuated in many countries including Korea. In this study, the generation of coffee grounds at home and abroad, the status of coffee grounds recycling, and the associated technology development trends were investigated. The coffee grounds recycling has been studied in the fields of energy, adsorbent, construction, agriculture, and bio-foods. Research is most active in the energy and biotechnology areas; in particular, since the oil in the coffee grounds is valuable as a feedstock for biomass energy, the technology related to energy recovery is currently under development worldwide. Removed because confusing and unnecessary.

Breakage and Surface Oxidation Characteristics of Waste NdFeB Magnet for Recycling (NdFeB 자석 재활용을 위한 파분쇄 및 그에 따른 표면 산화 특성 연구)

  • Kim, Kwanho;Kim, Gahee;Lee, Hoon;Kang, Jungshin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.26-34
    • /
    • 2019
  • Due to the increasing demand of rare earth magnet for various application, it is predicted that the amount of waste rare earth magnet will increase sharply. The process of waste rare earth magnet recycling is mainly consisted of leaching and separation of rare earth element contained in the magnet. However, there is no study on the breakage characteristics of the waste rare earth magnet for production of magnet powder. Therefore, in this study, effective crushing/grinding process and breakage characteristics were investigated for waste rare earth magnet. In the case of jaw crusher, the particle size of magnet was effectively reduced without rapid oxidation. In ball mill grinding test, it was found that the grinding process was not performed properly at the early stage of grinding. Moreover, waste rare earth magnet showed very low specific rate of breakage(S) and high fraction of fine particle breakage distribution(B) compared to ordinary minerals. These results can be used as a basic data for developing crushing/grinding circuit of waste rare earth magnet.

A Study on the Characteristics and Utilization of Ash from ASR Incinerator (ASR 소각재의 이화학적 물성 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.32-39
    • /
    • 2007
  • The measurement of physicochemical properties of ASR incineration ash has been carried dot and the preparation of light-weight material has also been performed using ASR ash for recycling point of view as building or construction materials. For this aim, chemical composition, particle size distribution, and heavy metal leachability were examined for 2 bottom ashes and 4 fly ashes obtained from the domestic ASR incinerator. In the present work, attempt has been made to prepare the lightweight material using boiler ash as a raw material, which is prepared by forming the mixture of boiler ash, lightweisht filler and inorganic binder and followed by calcination at elevated temperature. As a result, the content of Cu in bottom ash was as high as about 3wt% so that the recovery of Cu from ash was required. The major compound of SDR #5 and Bag filter #6 was found to be $CaCl_2{\cdot}Ca(OH)_2{\cdot}H_2O\;and\;CaCl_2{\cdot}4H_2O$, respectively. It is thought that heavy metal teachability of lightweight material prepared with boiler ash was significantly decreased due to the encapsulation or stabilization of heavy metal compounds.

Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Grounds (커피박을 활용한 탄재 혼합 조건에 따른 용강 내 탄소의 농도 및 용해 효율 측정)

  • Kim, Gyu-Wan;Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Reduction of CO2 emissions is an important issue in the steel industry, and the research on carbon materials that can partially replace cokes is necessary to reduce CO2 emissions. Meanwhile, the biomass fuel contains some fixed carbon, and the carbon content in the biomass can be increased by torrefaction. As one of the biomass fuels, coffee grounds contains about 55 mass% of carbon, and its about 270,000 tons are landfilled and incinerated annually in Korea. In addition, research on the recycling process due to the increase in annual coffee consumption is required. In this study, the effect of temperature on the concentration of fixed carbon in coffee grounds was investigated during torrefaction. Moreover, the effects of mixing ratio of torrefied coffee grounds with cokes on the carbon concentration and dissolution efficiency in the metal sample were investigated.

Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF (어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용)

  • Kim, Jong-Seok;Lee, Jae-Cheon;Jeong, Jin-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.894-899
    • /
    • 2012
  • In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.

Optimization of Washing Process for the Recycling of Potassium in the Manufacturing of Activated Carbon (활성탄 제조공정의 칼륨 재이용을 위한 세척공정 최적화)

  • Lee, Gi-bbum;Jung, Hee-Suk;Hong, Bum-ui;Kim, Seokhwi;Choi, Suk-soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.63-71
    • /
    • 2017
  • In this study, washing parameters such as washing time, agitation velocity, and cycles were optimized for high surface area of the activated carbon (AC) by KOH activation. Even though AC with high surface area showed at higher washing efficiency, over 90% on washing efficiency was regulated by the intra-particle diffusion due to high tortuosity of the pore structures on AC. In addition, we can obtain $K_2CO_3$ through the evaporation from the wastewater and use it for chemical activation of AC. The AC with $K_2CO_3$ activation has specific surface area values of $2,219m^2/g$ equally that of KOH activation. Considering that $K_2CO_3$ is an effective alternative as a KOH, our results demonstrated that the process by recycling wastewater on AC production could be applicable for near-zero wastes.

State and Prospects of Organic Waste Composting in Korea (유기성 폐기물의 자원화 가능성 및 퇴비 이용 전망 평가)

  • Shin, Hang-Sik;Hwang, Eung-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.7-30
    • /
    • 1998
  • Generation and recycling potential of organic waste in Korea were estimated. Status of organic waste composting and compost utilization also were surveyed to promote the recycling of organic waste. From 1994 to 1997, generation of garbage decreased gradually while recycling rate increased due to positive governmental strategy. During the same period, livestock waste increased 11.2%. Municipal wastewater sludge was generated 3,500 ton/day which was 0.03% of wastewater treated in 1996. The energy Potential of industrial organic waste was estimated to 288 million TOE which was 1.75% of the nationwide first energy consumption in 1996. Recycling of industrial sludge was low to 31%, while recycling of animal waste, plant scraps, and wasted paper were relatively high over 50%. Industrial sludge should be recycled more as it was the most part of industrial organic waste. Conventional composting materials were mainly livestock waste, food processing waste, fishery waste, sawdust, and nightsoil. Garbage and sludge have been composted recently. 420,000 tons of compost in 1996 were produced by 288 makers, the most of which were utilized in agriculture. It was suggested that separated collection, compost standard, and quality management should be provided to promote the composting of organic waste.

  • PDF

A Study on the Quality Characteristic of Mortar Using Lightweight Aggregate with Waste PET Bottle (폐 PET 병을 이용한 경량모르터의 품질특성에 관한 연구)

  • Choi Yun-Wang
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2003
  • Lightweight aggregate for concrete was manufactured from recycling the waste PET bottles (PET Bottle Lightweight Aggregate, LAPET). The qualities of LAPET and its mortar were investigated. Specific gravity and unit weight of LAPET was very low in comparison with river sand like as 1.39, 844 kg/㎥ respectively. In addition, compressive strength of concrete significantly decreased because of specific gravity of aggregate decreased with increases in containing ratio. When LAPET was contained to 25% and 50% of river sand, compressive strength of concrete at 28 days was indicated more 30MPa. Most of LAPET was generally showed to round shape and fluidity of mortar increased significantly due to sleeking the surface texture of LAPET. On the other hand, capillary absorption of mortar with LAPET was greatly increased in comparison with that of mortar without LAPET because of LAPET was composed of singular gradation. Absorption of LAPET was 0% because the interior structure of LAPET consists of PET like as organic high polymer. Therefore the fault of normal lightweight aggregate, absorption, will be improved. It could expect several advantages that the pollution of environment will be previously prevent and the waste resources could be recycled if LAPET is reused as aggregate for Lightweight concrete.

Simulation of Particle Behaviors within a Multi-stage Impact Crusher using Discrete Element Method (이산요소법을 이용한 다단 임팩트 파쇄기 내 입자 거동 모사)

  • Yu, Myoungyuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.86-92
    • /
    • 2018
  • The amount of construction waste generated is steadily increasing every year, and the Law for Promotion of Recycling is enacted. However, it is difficult to use it as a recycled aggregate for concrete, which is presented in the quality standard of recycled aggregate with high water uptake and low density due to low separation of aggregate between concrete and cement paste. Therefore, in this study, a multi-stage impact crusher was used to remove mortar, which is essential for improving the quality of recycled aggregate. In analyzing the characteristics of the equipment, the spectrum of energy generated in each part between the particle and the equipment was calculated by using DEM. In order to generate an effective separation phenomenon, it was confirmed that the operation condition of 900 RPM was appropriate based on the ratio of the number of collisions (L/H) of the low energy group (L) to the number of collisions of the high energy group (H).

Current Status of Nickel Smelting Technology (니켈 제련기술의 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.3-13
    • /
    • 2021
  • Nickel is widely used due to its excellent toughness, malleability and enhanced corrosion resistance. Therefore, nickel is indispensable in our daily lives, and it is widely used in basic to advanced applications such as stainless steel, super alloys and electronic devices. Recently, nickel has been widely used as the major material in secondary batteries and capacitors. The use of nickel continues to rise and has increased from 800 thousand tonnes per year worldwide in the 1970s to about 2 million tonnes in the 2010s. However, nickel is a representative rare metal and ranks 23rd among the abundant elements in the earth's crust. This study reviews the current status of the nickel smelting processes as well as the trend in production amount and use. Nickel is extracted by a wide variety of smelting methods depending on the type of ore. These smelting methods are essential for the development of new recycling processes that can extract nickel from secondary nickel resources.