• Title/Summary/Keyword: Recycling aggregate

Search Result 366, Processing Time 0.027 seconds

Quality properties of Recycled fine Aggregate according to method of Trituration (마쇄공정에 따른 순환골재의 품질 특성)

  • Sun, Joung-Soo;Kim, Ha-Seok;Kawg, Eun-Gu;Han, Ki-Suk;Lee, Do-Heune;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.517-520
    • /
    • 2006
  • The production of recycling aggregate is used to process in the crushing that recycling aggregate isn't perfect the concrete aggregate in Korea. This study is examine to the properties of recycling aggregate used method of trituration. Test item is the fineness, density and percent of absorptance, solid volume percentage of aggregate. The result is that first, the method of trituration is excellent to increase the time of trituration and steel ball but decrease washing water. Second, method of trituration is improve to the properties of recycling aggregate but aggregate of production is irregularity. And method of trituration have to study of the many test items.

  • PDF

Recycling of Ready Mixed Concrete Sludge as artificial aggregate (레미콘 슬러지의 인공골재로서의 재활용 연구)

  • 문경주;이양수;백명종;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.167-172
    • /
    • 1998
  • The purpose of this study is recycling of ready mixed concrete sludge as artificial aggregate by product technique of artificial aggregate in the normal temerature. For the qulity test of artificial aggregate using ready mixed concrete sludge, it is tested in the various aspect. Therefor, Quality of artificil aggregate is suitable as coarse aggregate except absoption, abrasion. For the application of aggregate in cement concrete, Coarse aggregate are replaced with artificial aggregate using ready mixed concrete sludge 100% of volume. The results of test shown that the artificial aggregate using ready mixed concrete sludge could be used replacement of coarse aggregate in cement concrete.

  • PDF

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Cost Analysis of Recycled Aggregate Production on Airport Pavement (공항포장용 순환골재의 처리방법별 경제성 분석)

  • Kang, Seung Min;Lee, Hwal Ung;Yang, Sung Chul
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.39-47
    • /
    • 2014
  • PURPOSES : This study aimed to analyze economic effect of recycled aggregate production on job-site airport pavement. METHODS : The validation of site recycling for waste concrete as economic efficiency is analyzed through the case study of site recycling at an O airport pavement construction. The break-even point for the cost of site recycling was estimated according to two different waste concrete processing methods such as job-site recycling and processing on commission (or plant). RESULTS : Job-site recycling cost decreases as the use rate of job-site recycled concrete aggregate increases, or the amount of concrete waste increases, but transporting distance decreases. It was shown in an O airport case that as the use rate of job-site recycled concrete aggregate exceeds 61.4 %, the job-site recycling cost is cheaper than the processing cost on commission. CONCLUSIONS : The results of this study can utilize basic data of feasibility for site recycling of waste concrete on airport pavement construction.

Concrete Recycling considering Risk Evaluation of Impurities in Recycled Aggregate (순환골재 불순물의 위험성을 고려한 콘크리트 리사이클링)

  • Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.95-97
    • /
    • 2012
  • Recycled aggregate (RA) produced from demolished concrete waste can bring about several problems on concrete performance, when it is used as aggregate for new concrete. Because RA generally has lower quality than natural aggregate due to the residual cement paste attached on RA and various impurities. It is also very difficult to ensure that the quality of RA remains consistent, because generally RA is produced variously. Thus, in concrete recycling, it is extremely important to estimate the risk of the impurities which could affect performances of recycled aggregate concrete (RAC) focusing on the material flow of concrete waste and its recycling. This study suggests an evaluation result to expect the possibility of impurity mixing in RA production procedure. and suggests a risk evaluation model to expect the changes of RAC performances based on conventional data in Japan.

  • PDF

Experimental Research for Flexural and Shea Behavior of Recycling Concrete Beam (재생 콘크리트보의 휨 및 전단 거동에 대한 실험연구)

  • 윤진수;류금성;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.561-566
    • /
    • 1999
  • Due to recent demolition works of aged concrete bridges and buildings, a considerable amount of waste concrete material have been reclaimed without crushing works. It is well believed that waste concrete could be used for recycling good coarse aggregate, which could contribute to partly reduce environmental pollutions due to noise and dust by demolition works, and also to solve the shortage of natural aggregate for new concrete works. This experimental study is to investigate the flexural and shear behaviour of recycling RC beams with pertinent amount of recycling coarse aggregate, such as 30%, 50% and 100% of total aggregate volume. It is concluded from the test that structural behaviour of recycled concrete is determined to have similar behaviour of normal concrete.

  • PDF

Aggregate Criterion for Paved Track Considering Recycling of Railway Ballast (도상자갈 재활용을 고려한 포장궤도용 골재 기준)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • On the paved track, the railway ballast is used as aggregate for the filling layer using the pre-packed concrete method. The condition of ballast as the paved track aggregate ensure that the compressive strength, particle distribution size for the pouring and surface clearance to increase the adhesive strength with mortar. It is profitable to recycle the existing railway ballast as a economical supply. In order to increase recycling characteristic, it is necessary to apply the similar criterion which does not exceed the conventional railway ballast criterion. Consequently, this paper was to investigate physical characteristics of existing ballast, particle size distribution, compressive and flexural strength, bearing capacity and filling capacity to prepare the aggregate's recycling. As a result, optimized aggregate criterion is suggested.

Performance Evaluation of Structural Concrete Using Recycled Aggregate (재생골재를 사용한 구조용 콘크리트의 성능평가)

  • Park, Hee-Gon;Bae, Yeoun-Ki;Lee, Jae-Sam;Lee, Yong-Do;Lim, Nam-Ki;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, recycled aggregate was used very limitedly in low value-added areas such as the base layer of roads. However, in response to the shortage of natural aggregate, high consciousness of resource saving and changed idea on environment, the quality of recycled aggregate has been improved considerably, and the percentage of recycled construction waste is increasing every year compared to simple landfill or incineration. Recently the Act on the Promotion of Construction Waste Recycling was enacted on December 2003 for the efficient use of recycled aggregate, and the Standards for the Quality of Recycled Aggregate for Concrete (Proposal) were announced in order to use and manage recycled aggregate according to quality. According to the Standards for the Quality of Recycled Aggregate for Concrete (Proposal), it is recommended to substitute recycled coarse aggregate and fine aggregate below 30% each. However, compared to the trend of recycling, the recycling rate of aggregate is still quite low. It is because of low performance of recycled aggregate, users' lack of understanding, etc. These problems basically come from the decrease of strength of recycled concrete resulting from the use of recycled aggregate, and recycled aggregate is still considered not reliable because there have been not many cases of actual application. If the basic problem of strength decrease is solved and data on recycled aggregate is provided through actual field placing, we may maximize the use of recycled aggregate. Thus, in order to maximize the use of recycled aggregate that satisfy the recycled aggregate quality standards, the present study made a mock-up similar to real structures, evaluated its performance and examined the field applicability of recycled aggregate concrete.

The Current Status of Aggregate Industry in Korea (우리나라 골재산업의 현황)

  • Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.80-86
    • /
    • 2016
  • To investigate the current status of aggregate industry in Korea, the law of aggregate gathering, the law of forest management, the aggregate statistics of demand and supply in recent years, and market price of aggregate were reviewed. It is conformed that the forest aggregate industry is developing year by year and leading the industry. In addition, in order to well understanding about aggregate industry, the production system and process of the Whaseong forest aggregate quarry were introduced.

Effects of Curing Method on the Mechanical Properties of Recycled Coarse Aggregate Concrete (양생방법에 따른 순환굵은골재 콘크리트의 강도특성)

  • Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Lee, Sea-Hyun;Shim, Jong-Woo;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.525-528
    • /
    • 2006
  • Recently, Korea government prepared Act on facilitation of construction waste recycling in December 2003 for effective recycling of rapidly increasing construction wastes, and has enforced the Act on Jan. 2005. This Act limits the definition of recycled aggregates to the aggregates which obtained quality certificate and for this purpose, government has operated quality standard and certificate system of recycling aggregate. The objective of this experimental study is to evaluate the mechanical properties of recycled coarse aggregate concrete according to curing method by ready-mixed concrete. Compressive strength ratio of recycled aggregate concrete under air-dry curing/wet curing was $74{\sim}91%$. KCI code for conventional concrete overestimated elastic modulus for recycled coarse aggregate concrete.

  • PDF