• Title/Summary/Keyword: Recycling Plastics

Search Result 172, Processing Time 0.022 seconds

Water-repellency and Bonding Characteristics of the Cement Hydrate-Organic Acid Compound (시멘트 수화물-유기산의 결합특성과 그 Compound의 발수성)

  • Rho, Jae-Seong;Cho, Heon-Young;Hong, Seong-Soo;Choi, Jeong-Bong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.639-648
    • /
    • 1992
  • For recycling cement hydrate(CH) as waterproofers for mortar and concrete or a filler for rubber & plastics, the cement hydrates were treated with stearic acid(SA). And the bonding characteristics and the water repellency of the CH-SA compounds were investigated by using FT-IR, TGA, SEM, XRD, and contact angle measuring apparatus. Water tightness of the remitars used CH-SA compounds was also tested. The results are summarized as follows : 1) If the cement hydrates are treated with over 2.0% of stearic acid, the CH-SA compounds show very strong water repellency. 2) The stearic acids are solidified on the surfaces of cement hydrate in calcium stearate and aluminium stearate. 3) If CH-SA compounds which is cement hydrate treated with 5~10% of stearic acid are used 3%~6% in remitar, water absorption ratio and water permeatility ratio of remitar are decreased in below 30% of those of the ordinary remitar.

  • PDF

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.

A Study on Characteristics of Flexural Behavior of High-strength Polymer Concrete Beams Using Recycled PET (PET 재활용 고강도 폴리머 콘크리트보의 휨거동에 관한 연구)

  • Cho Byung-Wan;Park Jong-Hwa;Park Seung-Kook;Bea Sung-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.483-486
    • /
    • 2005
  • The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. Polymer concrete beams using unsaturated polyester resins based on recycled polyethylene terephthalate (PET) plastic waste were used in our study for grasping its structural behavior of static and fatigue. As a result of static test, Compression stress distribution of Polymer concrete indicates linear behavior such as triangles. Although polymer concrete is high strength materials, its ductility capacity is excellent. From the fatigue test results, There was almost no difference on flexural characteristics between before and after fatigue loading. Therefore, recycled PET polymer concrete remains excellent structural ability after fatigue loading.

  • PDF

A Personal Reformer(PR) for your Fuel cell system (연료전지를 위한 개인용 개질기)

  • Kim Hyeon Yeong
    • 한국전기화학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.103-108
    • /
    • 2004
  • The present paper relates to an apparatus in which all carbonaceous material such as coal, oil, plastics and any substance having carbon atoms as part of its constituents are reformed(gasified) into syngas at temperature above $1,200^{\circ}C$(KR patent No.0391121, and PCT/KR2001/01717 and PCT/KR2004/001020). It comprises a single-stage reforming reactor without catalyst and a syngas burner as shown in Fig.2. syngas is combusted with $O_2$ gas in the syngas bunter to produce $M_2O$ and $CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevate the temperature of reactor above $1,200^{\circ}C$, and reaction products reduce carbonaceous material down to CO and $H_2$ gases. Reactants and heat necessary for the reaction are provided through the syngas burner only, Neither $O_2$ gas nor steam are injected into the reforming reactor. Reformer is made of ceramic inner lining and sst outer casing. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and a portion of the product syngas is recycled into syngas burner. The present reformer as shown in Fig.2 is suitable to gasify carbonaceous wastes without secondary pollutants formed from oxidation. Further, it can be miniaturized to accompany a fuel cell system as shown in Fig.3 The output syngas may be used to drive a fuel cell and a portion of electrical power generated in a fuel cell is used to heat a compact reformer up to $1,200^{\circ}C$ so that gas/liquid fossil fuel can efficiently reformed into syngas. The fuel cell serves as syngas burner in Fig.2. The reformation reaction is sustained through recycling a portion of product syngas into a fuel cell and using a portion of electric power generated to heat the reformer for continuous operation. Such reforming reactor may be miniaturized into a size of PC, then you have a Personal Reformer(PR).

  • PDF

Melting of PCB scrap for the Extraction of Metallic Components (PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리)

  • Kwon Eui-Hyuk;Jang Sung-Hwan;Han Jeong-Whan;Kim Byung-Su;Jeong Jin-Ki;Lee Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

A Study of School Waste Disposal Status and Its Reforms (Public Primary and Secondary Schools in Seoul) (학교 쓰레기 처리현황과 개선에 관한 연구 - 서울시 공립 초.중등학교를 대상으로 -)

  • 노성빈
    • Hwankyungkyoyuk
    • /
    • v.3 no.1
    • /
    • pp.130-140
    • /
    • 1992
  • The purpose of this study was to survey the trends of waste products in schools, its gathering and disposal, identification of problems and to analyze its disposal. Moreover, this study was aimed at basic suggestions about the establishment and plans of waste environmental education. 98 public primary and secondary schools were surveyed in Seoul during the month of March and April, 1991. Information was collected from each educational association by random sampling. Questionaries were used for this survey. To understand the disposal status of school waste and its reforms, this study surveyed the amount of waste by products, their origin and analyzed the disposal by type, one number of schools and teachers involved. The dump sited and disposal methods of school waste, its problems, and the status of school waste educations were researched, and ideal disposal methods and plans for waste education were suggested. The results were as follows. 1. The School's trash was produced by followings: paper, vinyle plastics, food, woods, metals, ceramics, glass, bottles, and ash from the heating system. The biggest cause of the school's waste as shown by the survey was a lack of environmental awareness(39.8%). The second biggest was the use of a one time use of disposable paper products(27.6%). 2. Waste collection by different grade levels were proven to be important but as you move from elementary to high school, the waste collecting operation decreased, in this connection between the students and waste collection itself it was significant on the other hand the teachers were not working as significant variables. 3. Of the school that collected waste 69.5 percent of the schools separately grouped common waste and recyclable waste. 25 schools(42.4%) received improvement on their environmental awareness of trash collection through this method. 4. From the number of disposal sites in surveyed schools, it was determined that the education of the necessity for separation of waste was performed in vain and accordingly the should require a real education in the future. 5. Regarding the method of disposal of waste the survey indicated that the #1 method of disposal was partial burning and the remains carried to a dump site by others(35,7%). In elementary schools the entire waste was taken by individuals to a dump site (33.3%). In high schools partial burning and then transported by individuals #1 in our survey(50%). 6. Relative to the problem of the treatment to waste, the emission of smoke from the burning was considered to be the #1 priority in our survey (62.3%) the problem of trash collection being delayed was 52.1%(1in our survey). 7. The present situation of environmental education of waste us lacking. Under present circumstances, the practice of public announcements for improvement and waste-paper collection has been going on vigorously but lacking in education as to the preparation of compositions for students the themes of public exhibitions, the organizing of voluntary associations should be part of the education system to reinforce student's awareness of proper waste disposal. 8. The most economical alternative for disposal was recycling usable waste or combustible material through a variety of education we can therefore educate students bring this education to their homes public servants will also be able to benefit in the waste disposal process with proper education. In conclusion we should intensify the systemical organization and the education of our waste disposal for a better environment.

  • PDF

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Life Cycle Assessment of Part Reuse/Recycling in the End-of-Life Stage of Personal Computers (부품 재사용 여부에 따른 폐컴퓨터에 대한 전과정평가(LCA))

  • Lim, Hyeong-Soon;Yang, Yun-Hee;Song, Jun-Il;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.494-500
    • /
    • 2006
  • Life Cycle Assessment(LCA) is an environmental assessment tool for evaluating environmental burdens associated with products, processes and activities from the raw material acquisition stage to the end-of-life stage. End-of-life stage as well as other processes requires a reliant database in order to increase the confidence in the LCA results. In this study, the flow of Personal Computer(as PC) in the end-of-life stage was examined and the database of two scenarios has been established, i.e. one is part reuse and the other is no part reuse, in the end-of-life phase of PC. Also, key environmental issues were identified by carrying out LCA on a PC in the end-of-life phase for eight environmental impact categories. The 'ozone layer depletion' contributes the highest environmental impact due to generation of $Cl_2$ gas during the incineration of waste plastics. In addition, the scenario 1(part reuse) is more environmentally sound than the scenario 2(no part reuse) when comparing two scenarios.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.