• 제목/요약/키워드: Recycling Plant.

검색결과 468건 처리시간 0.028초

오일 및 가스 플랫폼의 해체에 관한 연구 (A Study on the Decommissioning of Oil and Gas Platform)

  • 전창수
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1081-1091
    • /
    • 2020
  • The most recent issue of offshore plants that produce oil and gas are the decommissioning engineering of aged or discontinued platforms. There are many platforms that are being dismantled in the United States, Europe, and areas in Southeast Asia. In particular, more than 400 old platforms in Southeast Asia (Indonesia, Malaysia) are preparing to dismantle. They are spread out across Southeast Asia with a water level of 50 meters and small-scale of less than 10,000 tons. However, this offshore plant decommissioning market is a very suitable market for small and medium-sized shipyards in Korea to enter with their established equipment and engineers. Platform decommissioning is conducted according to decommissioning procedures. However, there are some difficulties in market advances as no developed case studies or process models are established on how platform structures and components are to be dismantled and how the dismantled material is to be reused and recycled. Therefore, this study presented domestic and foreign regulations on the reuse and recycling of oil and gas producing offshore plant platforms, case analyses on developed decommissioning engineering, platform reuse and recycling guidelines, and platform and pipeline decommissioning processes and methods.

레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구 (A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant)

  • 최영철;문규돈;조봉석
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구 (Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling)

  • 최준성
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

활성탄 제조공정의 칼륨 재이용을 위한 세척공정 최적화 (Optimization of Washing Process for the Recycling of Potassium in the Manufacturing of Activated Carbon)

  • 이기쁨;정희숙;홍범의;김석휘;최석순
    • 유기물자원화
    • /
    • 제25권3호
    • /
    • pp.63-71
    • /
    • 2017
  • 본 연구에서는 활성탄 제조에 널리 이용되고 있는 KOH 활성화법으로 활성화된 활성탄의 표면적 증가를 위하여 세척시간, 교반속도, 세척횟수 등의 변수들에 대한 활성탄 세척공정 최적화 연구를 수행하였다. 연구결과, 활성탄의 표면적은 세척효율이 증가됨에 따라 뚜렷하게 증가되었는데, 90% 이상의 세척효율을 얻기 위해서는 활성탄의 복잡한 세공구조에 따른 세공 내 확산메커니즘이 제어인자로 작용함을 알 수 있었다. 또한, 세척액의 증발을 통하여 $K_2CO_3$를 얻을 수 있었고 이를 이용한 활성화실험이 이루어졌다. 그 결과, 비표면적 $2,219m^2/g$의 제조가 가능하였다. $K_2CO_3$가 KOH의 효과적인 대안이라는 것을 고려할 때, 활성탄 제조공정에서 폐수 재이용은 무배출 폐기물 공정에 적용 할 수 있음을 보여주었다.

알루미늄 폐드로스 침출잔사 처리 파일롯트 플랜트 시운전 결과 (Test Run of Pilot Plant for Recycling of the Leached Residue in the Processing of Waste Aluminum Dross)

  • 박형규;이후인
    • 자원리싸이클링
    • /
    • 제13권3호
    • /
    • pp.50-57
    • /
    • 2004
  • 알루미늄 폐드로스는 알루미늄 용해업체에서 발생되는 주요 폐기물 중 하나인데, 주요 성분은 알루미나이며 상당량의 금속 알루미늄이 잔류한다. 알루미늄 폐드로스 내에 잔류하는 금속 알루미늄을 수산화나트륨 용액으로 침출, 분리시켜서 수산화알루미늄으로 제조하는 과정에서 침출잔사가 발생되는데, 침출 후 여과잔사의 주요 성분은 알루미나이다. 본 연구에서는 이 침출잔사를 세척, 건조, 배소하여 알루미나질 캐스타블 내화물과 같은 세라믹 원료로 재활용하는 연구를 수행하였으며, 상용화를 위한 파일롯트 플랜트시험을 수행하였다. 실증 생산라인은 년 간 1,000톤의 폐드로스를 처리하여 약 700톤의 세라믹 원료를 생산할 수 있는 규모이다. 생산라인의 시운전 결과, 개발 기술의 상용화 적용 가능성을 확인하였으며 상용화를 위해서 건조기의 개선과 Na, Fe등 불순 성분들이 시료에 유입되는 것을 줄여야 하는 문제점들을 파악할 수 있었다.

알루미늄 페드로스 재활용 파일롯트플랜트 시운전 결과 (Test Run of the Pilot Plant for Recycling of the Waste Aluminum Dross)

  • 박형규;이후인;최영윤
    • 자원리싸이클링
    • /
    • 제14권4호
    • /
    • pp.41-46
    • /
    • 2005
  • 알루미늄 폐드로스는 알루미늄 용해 시에 발생되는 주요 폐기물로서 주요 성분은 알루미늄이며 또한 상당량의 금속 알루미늄이 잔류한다. 본 연구에서는 국내 재생 알루미늄업체에서 발생된 알루미늄 폐드로스를 수산화나트륨 용액으로 침출하여 폐드로스 중의 잔류 알루미늄을 용액 상으로 침출, 분리시키고, 침출용액 중에서 알루미늄 성분을 수산화알루미늄으로 회수하였으며 침출 여과 시에 발생된 폐드로스 잔사는 수세, 건조, 배소 과정을 거쳐 알루미나질 세라믹 원료로 재활용하였다. 또한, 1일 4톤의 알루미늄 폐드로스를 처리할 수 있는 규모의 파일롯트 플랜트를 건설하였으며, 시운전을 통하여 개발기술의 재현성을 확인함으로써 연구결과의 상용화 가능성을 제시하였다.

폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발 (Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment)

  • 김성연;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

A study on the diatomaceous earth filtration of recycling basin supernatant in the water treatment plant

  • Shin, Dae-Yewn;Park, Young-Ho;Moon, Ok-Ran;Park, Hymg-Il;Chung, Kyung-Hoon;Chin-Surk ko
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.94-97
    • /
    • 2003
  • This study performed the research about the recycling basin supernatant by pre-coat filtration in the D water treatment plant at Gwangju. Choice the prompt conditions with diatomaceous earth filtration which makes contaminant reduced in the basin supernatant. Element disk of candle used in this experiment are pore size 10$\mu\textrm{m}$(R), 20$\mu\textrm{m}$(B) and 40$\mu\textrm{m}$(Y). Diatomaceous earth are cake pore size 3.5$\mu\textrm{m}$(A), 7$\mu\textrm{m}$(B) and 17$\mu\textrm{m}$(C). The filtrate concentrations were from 0.18 to 0.92$\mu\textrm{g}$/1 of Chlorophyll-a. And then, removal rate percentage were from 78.30 to 95.57(R-A). In addition SS 80%, CODMn32% COD 61%, T-N 10% and T-P 39% on the D water treatment plant. The R(40$\mu\textrm{m}$) C(17$\mu\textrm{m}$) process can be substituted of reusing the recycled water of recycling basin supernatant view of capacity and removal rate of filtrate.

  • PDF

레미콘회수수를 이용한 액상탄산화에 관한 연구 (Study on liquid carbonation using the recycling water of ready-mixed concrete)

  • 임윤희;이주열;최창식;홍범의;박진원;이대영;박병현
    • 한국응용과학기술학회지
    • /
    • 제30권4호
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.