• Title/Summary/Keyword: Recycling Facilities

Search Result 243, Processing Time 0.022 seconds

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Effect of Pile Temperature Control on Changes of Physicochemical Parameters of Composted Poultry Waste (계분의 콤포스터 처리시 내부온도 조절이 생산물의 물리·화학적 성상에 미치는 영향)

  • Kwak, Wansup;Kim, Taegyu;Kim, Changwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.39-51
    • /
    • 1994
  • When broiler litter was composted under the control of peak temperature of piles(uncontrolled, controled below $70^{\circ}C$ and below $60^{\circ}C$), changes of physical and chemical parameters were determined throughout the processing period. Broiler litter was composted in each of three $1.0{\times}1.0{\times}1.2m$ dimensional facilities for 8 weeks. After 5 to 6 weeks of composting, broiler litter was converted into the final compost with no ammonia odour, rice hull size of particle, and faint brown color. Central temperature of piles reached to the peak(about $69{\sim}70^{\circ}C$) within 3 to 4 days after composting and gradually decreased thereafter. The final product contained 26.5% of moisture, 9.0~9.1 of pH, and 14.0~14.3 of C/N ratio. The increase of C/N ratio with processing resulted from the considerable loss of N. The total wet weight of the final composts was an average of 38.3% of the initial weight, the dry weight of those 64.1%, and the organic matter weight of those 34.8%. Treatments of central temperature of composts did not affect changes of moisture, pH, C/N ratio, total wet weight, total dry weight, and total organic matter weight. In general, composted broiler litter was converted into the final product with little change in physical and chemical parameters after 5 to 6 weeks of processing. Nitrogen losses during the composting should be prevented for the improvement of the composting efficiency of broiler litter.

  • PDF

A Fundamental Study on the Adsorption Capacity of Heavy Metals by Earthworms Cast (지렁이 분변토의 중금속흡착능에 관한 기초연구)

  • Son, Hee-Jeong;Kim, Hyeong-Seok;Song, Young-Chae;Sung, Nak-Chang;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1996
  • The purpose of this study is the evaluation of adsorption capacity of casts for heavy metals comparing with the activated carbon. The casts was obtained from vermicomposting of the mixed organic sludges which were generated from the treatment facilities for leather wastewater and cattle wastewater. The physico-chemical characteristics of cast was investigated. Also, the batch adsorption experiments of cast and activated carbon for heavy metals were carried out, and the results were analyzed by Freundlich isotherm. The buffering capacity to the acidic wastewater was founded in the cast, and the cation exchange capacity of cast impling adsorption capacity for soluble substances was evaluated as about 55me/100g. Those were implied that the cast have a large potential as a good adsorbent for soluble pollutants in wastewater. From the results of batch experiments, the removal efficiencies of tested various heavy metals including Pb, Cu, Cd, and Cr were very high value as 89-98% for the activated car-bon, and 80~95% for the casts except for Zn. The adsorption equilibriums for the two materials were achieved within 90 minutes. The order of preferable metals in the adsorption was found to be Pb>Cu>Cd>Cr>Zn on the cast and to be Pb>Cd>Cu>Cr>Zn on the activated carbon, respectively. From the above results, it might be con-cluded that cast is effectively available as a good adsorbent to treating the heavy metal bearing wastewater.

  • PDF

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

A Study on Investigate the Suitability of ${NH_4}^+$ Applications of Food Waste Water Instead of Urea in the Incineration of Municipal Solid Waste (생활폐기물 소각시 요구되는 요소수의 대체물질로 음식물 폐수 속의 암모니아 적용에 관한 연구)

  • Go, Sung Gyoo;Cho, Yong Kun;Lee, Young Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study examined for possibility of the food wastewater incineration treatment method as one of overland treatment method by incineration through liquefied spray of food wastewater when incinerating domestic wastes under operation and for the relationship, etc of air discharge material discharged in incineration, and the results of study are as follow: The food wastewater as one of overland treatment method was analysed 94-96% of moisture contents. Temperature of incinerator outduct during mixed incineration of food wastewater with MSW was average $897^{\circ}C$ and incineration of only MSW was $925^{\circ}C$. Temperature of the mixed incineration of food wastewater was dropped about $28^{\circ}C$ by incineration of only MSW. Concentration of nitrogen oxides(NOx) among air discharge gases was studied by 50ppm, 46ppm when inputting $200{\ell}/hr$, $300{\ell}/hr$ into the incinerator as the quantity of food wastewater. In the mixed incineration of food wastewater, generation speed of scales in the inside of a tubular exhaust gas boiler became rapid and the scale generation quantity became large but the exhaust gas boiler normally operated since scales were removed in cleaning of the tube with a compressive air cleaning facility and there was no opening clogging phenomena in a filter cloth of the filtering dust collector. The overland treatment method, not ocean dumping of food wastewater can be proposed as a technology since mixed incineration of food wastewater with MSW in the existing domestic waste incineration plant is possible, and operation costs of the incineration facility were reduced since use of chemicals such as ammonia and urinary hydrogen ion excretion, etc used in incineration facilities for removing nitrogen oxides(NOx).

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Sludge Minimization by Using Dewater and Thermal Treatment in the Water Treatment Plant (탈수(脫水) 및 건조기법(乾燥技法)을 이용한 정수장(淨水場) 슬러지 감량화(減量化))

  • Jun, Hang-Bae;Kim, Yong-Han;Kim, Ryang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.87-98
    • /
    • 1994
  • Sludge minimization in an water treatment plant can be achieved by optimizing a main water treatment process as well as by enhancing a thickening and a dewatering facilities. In this study, dewatering and drying techniques for reducing the quantity of the water sludge generated from the conventional water treatment plant in the local states were investigated by reducing its water content. Not only the types and dosages of polymers but also the mixing intensity of the mixtures of a concentrated sludge and polymers on the different pH were evaluated for the optimum dewatering conditions of the water sludge. Weight reduction of the water sludge was also tested at a given temperature range. The dewatering efficiency of the water sludge was not affected by the types of polymer but by mixing intensity(GT value) in this study. pH effect on dewaterbility of the water sludge took a major role at the neutral pH range. The optimal polymer dose was 1.5 mg-polymer/g-TSS(about 40mg/L as polymer). Dewaterability was enhanced at a lower mixing intensity(GTbelow 10,000 sec-1). Free water in the void of sludge cake was dried around $100^{\circ}C$, chemical bound water was evaporated around $320^{\circ}C$, and organic material was burned out at the range of 300 to $600^{\circ}C$. Ignition losses of the water sludge were varied 15 to 40 % as the raw water quality. The ignition loss due to the chemical bound water was 10-20% and the loss due to the organic material was 4-20% of the total ignition loss.

  • PDF

Effect of Landfill Site Characteristics on Siloxane Production in Landfill Gas (매립지 특성이 매립가스 내 siloxane 발생에 미치는 영향)

  • Nam, Sangchul;Kang, Jeong-Hee;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.44-53
    • /
    • 2011
  • Siloxane, organo-silicon compound, is used in the various forms of products such as cosmetics and detergents due to its quality physical chemistry attributes. Siloxane included in landfill gas which is caused in the process of decomposing of such products after landfill has imposed negative impacts on the operation of landfill gas utility facilities. The objective of this study was to investigate the siloxane production characteristics depending on the features of various landfill site in Korea so that the analysis was made on the landfilling age and landfill waste by in terms of its concentration, structure and composition. As for the concentration of siloxane depending on time passage, 12 landfill sites were reviewed by landfilling age. As for production attributes change of siloxane by landfill wastes, the source of wastes, physical production ration and siloxane concentration were compared in 6 landfills. The average concentration of total-siloxane within LFG is $6.75mg/m^3$ and cyclic-siloxane out of it occupies over 93%. By element, D4 and D5 in order take the highest proportion regardless of total-siloxane concentration and landfilling age. Even though this study is not able to verify the different impact of each kind of wastes on the generation of siloxane, it is confirmed that total-siloxane and cyclic-siloxane decrease in line with the increase of landfilling age as it does in the first order decay model for landfill gas.

Effects of Tourist and Accommodation on the Municipal Solid Waste Generation in the Small Island (소규모 도서지역에서 관광객 및 숙박시설이 생활폐기물 발생량에 미치는 영향)

  • Lim, Ji-Young;Park, Sang-Hyun;Song, Seung-Jun;Cho, Young-Gun;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • This study analyzed the correlation between generation of municipal solid waste (MSW), number of tourists, and area of accommodation facilities of small island such as Shin, Si, Mo and Jangbong island in Ongjin county, Incheon for use as basic data for estimation of MSW generation. An analysis of statistics data from september in 2012 to august in 2018 showed MSW generation was steadily increasing, and MSW generation in 2018 was increased by about 3.98 times compared to 2012. In summer, which is the tourist season, MSW generation was 2.43~9.39 times higher than in winter. MSW generation was influenced by the number of tourists. As of August 2018, generation rate of per capita of MSW was $0.839kg/cap{\cdot}day$, which was about 3.71 times higher than August 2013. Area of accommodation increased continuously from 2008 to 2017, increasing by about 8.32 times. The coefficient of determination between the area of accommodation and the number of tourists was 0.8418. Also coefficient of determination between area of accommodation and MSW generation were 0.9370 and 0.6025 before and after August in 2015, respectively. Accommodation was lacked due to increase of tourists. Although accommodation was scarce because of increase in the number of tourists since 2015, the coefficient of determination decreased due to the increase in waste generation.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.