• Title/Summary/Keyword: Recycling, Recycling technology

Search Result 1,779, Processing Time 0.028 seconds

Studies on the Separation of Uranium from Seawater by Composite Fiber Adsorbents(2)(Characterization of Adsorption-Desorption) (복합재료 섬유흡착제를 이용한 해수로부터 우라늄 분리에 관한 연구(2)(흡-탈착 특성))

  • Hwang, Taek-Seong;Park, Jeong-Gi;Hong, Seong-Gwon;Sin, Hyeon-Taek;No, Yeong-Chang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.761-767
    • /
    • 1996
  • The composite fiber adsorbents containing amidoxime group were prepared and separation properties of uranium ion from seawater were investigated. The amount of uranium adsorption was increased with an increase in adsorption time. When the mole ratio of monomer and comonomer, such as acrylonitrile (AN), tetraethyleneglycol dimethacrylate(TEGMA), and divinylbenzene (DVB), were 1 :0. 1 :0.003, this resin showed the maximum adsorption ability for uranium at a level of pH 8. The amount of uranium adsorption was also increased linearly to one hour with an increase in the content of adsorbent which was added in the composite fiber adsorbents(CFA). The maximum adsorption for uranium of CF A showed at $25^{\circ}C$. Hence, the adsorption ability of CF A for calcium and magnecium ions were increased gradually by the recycling of adsorption and disorption, the adsorption content of their on were 0.3, 0.9mmole/g-adsorbents, respectly. It also showed that the adsorption contents of Ca and \1g ions were much lower than them of uranium. The desorption of uranium on the CF A was carried out , bout 100% within 30min, and the desorption rate of various CF A were equalled.

  • PDF

Protective Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts on improvement of sarcopenia by Atorvastatin-induced muscle atrophy cell model (Atorvastatin으로 유도된 근위축 세포모델에서 상황-오미자박 고상발효물 열수추출물의 보호효과)

  • Kim, Young-Suk;Hwang, Su-Jin;Park, Kwang-Il;Lim, Jong-Min;Cheon, Da-Mi;Jung, Yu Jin;Jeon, Byeong Yeob;Kwak, Kyeung Tae;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.239-252
    • /
    • 2021
  • Objectives : This study is to effect of improving muscle atrophy through water extract on the solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis in an atorvastatin-induced atrophy C2C12 cell. Methods : C2C12 myoblast were differentiated into myotube by 2% horse serum medium for 6 days, and then treated solid-phase fermentation(S-P) extract at different concentrations for 24h. To investigate the effect of S-P extract on the induction of muscle atrophy and expression of atrophy-related genes and apoptosis in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : As a result of treatment with atorvastatin at concentrations of 5, 10, and 20 uM on the 6th day of differentiation in C2C12 myotube cells, it was confirmed that the cell morphology was damaged in a concentration-dependent manner, and the length and thickness of the myotube also decreased in a concentration-dependent manner. Treatment with S-P extract (50, 100 and 200 ㎍/㎖) increased of GSH and inhibited ROS in the atorvastatin-induced muscle atrophy cell model at a concentration that did not induce toxicity. In addition, it was confirmed that it has an effect on muscle reduction by inhibiting apoptosis of muscle cells as well as being involved in protein production and degradation of muscle cells. Conclusions : Atorvastatin-induced atrophy C2C12 cell, S-P extract activates related to differentiation/generation and proteolysis, and inhibits cell death of atrophy in C2C12 cell. Based on this, it is necessary to prove its effectiveness through animal models and human application test, but it is considered to be discarded Schisandra chinensis can present the potential for development as a recycling industrial material.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel (고형연료제품의 유해중금속 분석을 위한 마이크로파 산 분해법의 개선)

  • Yang, Won-Seok;Park, Ho-Yeun;Kang, Jun-Gu;Lee, Young-Jin;Lee, Young-Kee;Yoon, Young-Wook;Jeon, Tae-Wan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.616-626
    • /
    • 2018
  • The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach $180^{\circ}C$, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.

Effect of Nitrogen Plasma Surface Treatment of Rice Husk-Based Activated Carbon on Electric Double-Layer Capacitor Performance (질소 플라즈마 표면처리가 쌀겨 기반 활성탄소의 전기 이중층 커패시터 성능에 미치는 영향)

  • Lee, Raneun;Kwak, Cheol Hwan;Lee, Hyeryeon;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • To increase biomass utilization, rice husk-based activated carbon (RHAC) followed by nitrogen plasma surface treatment was prepared and the electric double-layer capacitor performance was investigated. Through nitrogen plasma surface treatment, up to 2.17% of nitrogen was introduced to the surface of RHAC, and in particular the sample reacted for 5 min with nitrogen plasma showed dominant formation of pyrrolic/pyridine N functional groups. In addition, mesopores were formed on the RHAC material by the removal of silica, and the surface roughness of the carbon material increased by nitrogen plasma surface treatment, resulting in the formation of many micropores. As a result of cyclic voltammetry measurement, at a scan rate of 5 mV/s, the specific capacitance of the RHAC treated with nitrogen plasma increased up to 200 F/g, showing an 80.2% improvement compared to that of using untreated RHAC (111 F/g). This is attributed to the synergetic effect of the introduction of pyrrolic/pyridine-based nitrogen functional groups and the increase of the micropore volume on the surface of the carbon material. This study has a positive effect on the environment in terms of recycling waste resources and using plasma surface treatment.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation (셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법)

  • Gab-Seong Cho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.54-65
    • /
    • 2023
  • Due to the nature of electric vehicles, the batteries used for electric vehicles have a very large rated capacity. If an electric vehicle runs for a long time or an electric vehicle is abandoned due to a traffic accident, the electric vehicle battery becomes a waste battery. Even in vehicles that are being abandoned, the remaining capacity of waste batteries for electric vehicles is sufficient for other purposes. Waste batteries for automobiles are very expensive, so they need to be recycled and reused, but there was a problem that the standards for measuring the performance grade of waste batteries for recycling and reuse were insufficient. As a method for measuring the remaining capacity of waste battery, the most stable and reliable method is to measure the remaining capacity of battery using full charge and discharge. However, the inspection method by the full charging and discharging method varies depending on the capacity of the battery, but it takes more than a day to inspect, and many people are making great efforts to solve this problem. In this paper, an electric vehicle battery residual capacity analysis technique using voltage deviation between cells was studied and analyzed as a method to reduce inspection time for electric vehicle batteries. To this end, a full charging and discharging-based capacity measurement system was constructed, experimental data were collected using a nose or waste battery, and the correlation between the voltage deviation and the remaining capacity of the battery pack was analyzed to verify whether it can be used for battery inspection.

  • PDF

Utilizing Abandoned Mines in Regional Development: Feasibility of Underground Data Centers and Public Sports Facilities (폐광지역발전을 위한 폐광산 활용방안 연구: 지하 데이터센터 및 공공체육시설로의 운용성 평가)

  • Hyeong-Geol Kim;Ganghui Kim;Sanghyun Bin;Won-Sik Woo;Jongmun Cha;Chang-Uk Hyun
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.737-753
    • /
    • 2023
  • Abandoned mines represent unused space resulting from resource use and changes in industrial environments. Efforts are underway to repurpose such underground spaces, leveraging their unique attributes of temperature stability, shading, and security. This study aimed to assess the feasibility of operating high-demand data centers and public sports facilities as potential recycling options for abandoned mine spaces. The status of data centers located in abandoned mines abroad was examined, including their operational technology capitalizing on the advantages of underground spaces. Considering the varying sizes of underground spaces in different types of abandoned mine in South Korea, the suitability of installing facilities for 12 different sports was evaluated for potential contributions to the health and welfare of local residents. The utilization of abandoned mine spaces as data centers and public sports facilities is expected to not only recycle industrial heritage but also to allow new development opportunities for local communities.

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Characteristics of micronized blue ceramic pigments using electric arc furnace dust (제강분진을 활용한 청색 세라믹 안료의 미립화 거동에 관한 연구)

  • Kim, Hye-Jin;Han, Kyu-Sung;Hwang, Kwang-Taek;Nahm, Sahn;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.115-122
    • /
    • 2019
  • Electric arc furnace dust (EAFD), which is a dust waste generated in the steel manufacturing process, contains heavy metals. Recently, researches of recycling a large amount of valuable metals such as zinc and iron in EAFD are being actively carried out. In this study, EAFD is used as a substitute for cobalt in blue ceramic pigments without any pretreatment. Then, the synthesized blue ceramic pigment using EAFD was micronized and formulated as a ceramic ink for inkjet printer. The particle size distribution, crystal structure and color characteristics during the micronization process were investigated for the development of ceramic ink. $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments showed excellent blue coloric properties and monomodal distribution through micronization process. The average particle size of $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments after 3 hours of milling was $0.271{\mu}m$, which is smaller than $0.303{\mu}m$, which is the average particle size of $CoAl_2O_4$ ceramic pigments without EAFD after 5 hours of milling. Especially, it was confirmed that $Co_{0.75}Zn(EAFD)_{0.25}Al_2O_4$ ceramic pigments showed a color difference (${\Delta}E{^*}_{ab}$) value of 5.67, which smaller than ${\Delta}E{^*}_{ab}$ value of $CoAl_2O_4$ during micronization. These results show that EAFD can be used as a raw material for a blue ceramic pigment by replacing expensive cobalt without any pretreatment.