• Title/Summary/Keyword: Recycled-aggregate

Search Result 931, Processing Time 0.03 seconds

Recycling of the Waste Rock and Tailings from Yangyang Iron Mine (양양철광산 선광 부산물의 순환자원화)

  • Jung, Moon Young;An, Yong Hyeon;Kim, Young Hun
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.23-31
    • /
    • 2016
  • It was found that there was no problem in recycling by-products (waste rock and tailings) from Yangyang iron mine themselves through matter conversion because they are not hazardous according to results of KSLT method. In case of using tailings as sub-materials of cement, it recommended the use of less than 3% tailings dosage not to exceed 0.6% of total alkali ($R_2O$) content based on standard quality of portland cement (KS L 5201). Non sintered eco-brick corresponding to class 1 quality of recycled clay brick (KS I 3013) can replace 15% of cement with tailings and 100% of general fine aggregate with waste rock from iron mine. As mentioned above, recycling the by-products (waste rock and tailings) as sub-materials of cement and non sintered eco-brick could gain both environmental and economic benefits, that is, reduction of scale and maintenance cost of tailing ponds, decrease of energy use and $CO_2$ emission.

Effect of XPS and Polyethylene Aggregates in Model Tests for Prevention of Frost Heave in Railroad Track (철도에서의 동상방지를 위한 모형시험에서 XPS 및 PE골재의 설치 효과)

  • Kim, Donggwan;Yoon, Yeowon;Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.5-13
    • /
    • 2014
  • In this research, in order to study insulation effect of commercial XPS and recycled PE aggregates for prevention of frost heave in the roadbed of railroad track from the freezing temperature, model tests were carried out in the large freezing room. For this, thermal conductivities were measured for various dry densities, water contents, temperatures and mixing ratios of PE aggregates. From the tests, it can be seen that thermal conductivities of roadbed decrease with the increase of the ratio of mixed PE aggregates. However it was sensitive to the changes of temperature and water content due to the amount of water in the voids. From the model test of railroad track, it can be seen that the time to reach $0^{\circ}C$ was longer for XPS than that for the PE aggregates. Also the test shows best insulation effect can be achieved when XPS board was installed above the PE aggregate layer rather than the opposite order.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

A Study on the Properties of Hwangto Permeable Block Using Ferro Nickel Slag (페로니켈슬래그를 혼입한 황토투수블럭 물성에 관한 연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.607-618
    • /
    • 2022
  • This study involves the development of a Hwangto permeable block for rainwater storage tanks. The permeable products that form continuous voids between Hwangto binders and aggregates are fine milled slag powder, which is an industrial by-product generated during the production of Hwangto and iron, and ferro nickel slag. The properties of Hwangto permeable blocks were studied using recycled resource aggregates. The target quality is based on KSF 2394. The Hwangto permeable block for a rainwater storage tank is made of water-permeable material, and the permeability of the Hwangto permeable block itself is 0.1mm/sec or higher, with a physical performance of over 5.0MPa in flexural strength and over 20.0MPa in compressive strength. The physical properties of Hwangto permeable block for rainwater storage tanks were researched and developed. In order to prevent flooding due to heavy rain in summer and the urban heat island phenomenon due to depletion of ground water, continuous pores are formed in the block to secure a permeability function to prevent rainwater from accumulating in the pavement of the floor, and to prevent slippage for comfortable and safe storage.

Thermal Characteristics of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환식 무토양재배시스템의 양액 및 배지의 온도변화 특성)

  • Son, Jung-Eek;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1998
  • The root-zone environment is an important factor to the plant growth and it is closely related to the thermal characteristics of the root media. In this study thermal characteristics of root media with ambient environmental conditions were analyzed. The temperatures of nutrient solution as well as inside air of culture bed were measured in Nutrient Film Technique(NFT) and Deep Flow Technique(DFT) systems, and also the temperatures of root media measured in aggregate culture systems , The temperature of nutrient solution of NFT system with as low as 3$\ell$/min of flow rate was 3$^{\circ}C$ higher than that with 5 $\ell$/min of flow rate in the daytime, and the temperature of inside air was 2$^{\circ}C$ higher at night. And the temperature of nutrient solution of DFT system with as low as 0.8 cm of water level was 1-2$^{\circ}C$ higher than that with 1 8 cm in the daytime, and the temperature of inside air was almost same at night. The root-zone temperatures in the perlite and rockwool granulate systems with film mulching were 3$^{\circ}C$ higher than those without film mulching in the daytime. However, the rockwool slab system with film mulching showed the same trend as rockwool granulate system, but relatively higher temperature than any other medium because of the exposure of media surface to the ambient air. Additionally the temperature below the plant was measured 3$^{\circ}C$ lower than that between plants.

  • PDF

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete (잔골재 특성이 굳지 않은 지오폴리머 콘크리트에 미치는 영향)

  • Cho, Young-Hoon;An, Eung-Mo;Lee, Su-Jeong;Chon, Chul-Min;Kim, Dong-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2016
  • It is possible that aggregates add on to geopolymer based fly ash to mix mortar and concrete like cement. This is necessary to evaluate mineral composition, particle shape, surface, size distribution, density and absorption ratio for fine aggregates due to few detailed research to examine influence of fine aggregates properties on unhardened geopolymer concrete. In this research, used two different fine aggregates, Jumunjin sand(having quartz, mica, feldspar, pyroxene in mineral composition, more than 96% of total size between -0.60 and +0.30mm, angular shape and rough surface) and ISO sand(having almost all quartz in mineral composition, more than 51% size between -1.40 and +0.60mm, simultaneously varied size distribution, spherical shape and smooth surface). After an experimental result of the varied ratio of Si/Al=1.0-4.1 geopolymer paste, mix proportion respectively applied Si/Al=1.5 having the highest compressive strength to mortar and Si/Al=3.5 having the highest consistency to concrete. Geopolymer mortar by mixing with Jumunjin and ISO sand in varied range of 20-50wt.% showed flow size increase between 69.5 and 112.0mm, between 70.5 and 126.0mm respectively. Geopolymer concrete at an addition of 77wt.% of total aggregates ratio showed that average compressive strength was 32MPa and the consistency was favorable to molding. Since ISO sand observing varied size distribution, spherical shape, smooth surface, low absorption ratio resulted in advantageous properties on consistency of geopolymer, geopolymer concrete can be suitable for using the fine aggregates similar to ISO sand.