• 제목/요약/키워드: Recycled paper

검색결과 586건 처리시간 0.025초

냉동컨테이너에서의 HFC-134a 탈루배출 특성에 대한 연구 (Fugitive Emission Characteristics of HFC-134a from Reefer Container)

  • 김의건;김승도;이영표;변석호;김혜림
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.110-118
    • /
    • 2014
  • This paper addresses the fugitive emission factors of Reefer Container at use-phase and disposal-phase. The residual quantities and operation time of thirty nine Container were weighed, using a commercial recover of refrigerants to determine the emission factors at the use-phase. The emission factor at the disposal-phase, refrigerant is accomplished has not recycled, the residual rate was assumed that the emission factor. The average residual rate of thirty nine Container is determined to be $70.8{\pm}4.0%$. The emission factor at the use-phase is estimated to be $4.9{\pm}0.9%/yr$ in the case of using average age of 8.1 years and the average residual rate determined here. We estimate 162.7 g/yr for the average emission quantity of refrigerant per operating Container, while 2038.1 g for that per waste Container. Since the chemical compositions of refrigerant of waste Container were the same as those of new refrigerant, it is expected that the refrigerant recovered from waste Container can be reused for refrigerant.

폐타이어를 이용한 목질고무 복합패널의 물성에 관한 연구 - 원료혼합비율에 따른 복합패널의 재질변화 - (Studies on Physical Properties of Wood-based Composite Panel with Recycled Tire Chip - Change of Properties on Composite Panel by Mixing Ratio of Combined Materials -)

  • 이원희;변희섭;배현미
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권1호
    • /
    • pp.70-75
    • /
    • 1998
  • In this paper, the relationships between volumetric mixing ratio of rubber chip and physical and mechanical properties of wood/rubber composite panel was examined in order to investigate the mixture characteristics of wood and rubber chip. Because of the specific gravity of rubber differed from wood chip, physical properties of wood/rubber composite panel was shown very different values by mixing rate of chip element. Specific gravity in air-dry of composite panel was increased rapidly as volumetric percent of rubber chip was increased. Moisture content of composite panel was decreased as volumetric percent of rubber chip element was increased. This results was considered that wood weight is light and porosity material for moisture absorption. Compressive strength and modulus of rupture in bending test were decreased as volumetric percent of rubber chip increased. By mixing ratio control of chip elements, various wood/rubber composite panel can be applicable to every interior materials such as subfloor, playground, and exterior materials such as road blocks for recreational facilities in garden and forest and city parks.

  • PDF

EVA방수시트의 접합부 열풍융착 시 융착속도 변화에 따른 접합 인장강도 변화 추이 연구(하절기 중심으로) (A Study on Trend of Joint Tensile Strength with Joint Hot Air Welding Speed in EVA Waterproofing Sheet (Focusing on the summer Season))

  • 김선도;안현호;박완구;김동범;박진상;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.217-218
    • /
    • 2016
  • Sheet based waterproofing methods are factory produced and have a advantage or forming uniform waterproofing layer in construction sites, allowing them to become a commonly used material domestically. Particularly in the case of EVA waterproofing sheets, they can be manufacturing using recycled materials and are thus increasing in application due to their eco-friendly factors. However, heating adhesion method has to be used in case of overlapping areas of waterproofing sheets, but not enough studies have been made on the adhesion stability based on different heat adhesion speed. In this paper, EVA sheets have been studied with their overlap area properties following a heat adhesion method in wintertime ambient conditions and have been observed for the changes in the tensile strength based on different head adhesion speed and rates. According to the results, 6~7m/min adhesion speed was shown to have produce the best tensile strength.

  • PDF

세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가 (The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere)

  • 이원준;황해진;한규성;황광택;조우석;김진호
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.353-358
    • /
    • 2017
  • Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

진동 및 충격조건에 대한 완충재별 완충성능 분석 (Cushioning Performance Analysis of Cushioning Materials for Vibration and Impact Condition)

  • 오재영
    • 한국포장학회지
    • /
    • 제15권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The impact absorption materials made of synthetic organic chemical product like Expanded Polystyrene(EPS), Expanded Polyethylene(EPE), Expanded Polyurethane(EPU), etc. have been used with general packaging material until the present. But nowadays, the use of these materials is intended to be decreased and to be recycled in connection with environmental pollution. In addition, it has been tried to substitute these materials with non-pollution materials(natural materials) like pulp mould, paper protectors, etc. At the same time, it is required to evaluate and analyze these cushioning materials for cushioning properties based on impact and vibration, in order to make an efficiency on the overall packaging system because they are generally being used by a random choice regardless of the properties of contents and cushioning materials. Therefore, this study provides analyzed data on cushioning properties of various cushioning materials against impact and vibration, and is intended to provide more efficient model for packaging system by minimizing their using amount through choosing an optimal cushioning material as well as intended to lead to the use of nonpollution materials in case these cushioning materials have same cushioning properties.

  • PDF

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Effect of fly ash and GGBS combination on mechanical and durability properties of GPC

  • Mallikarjuna Rao, Goriparthi;Gunneswara Rao, T.D.
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.313-330
    • /
    • 2017
  • Geopolymer is a sustainable concrete, replaces traditional cement concrete using alternative sustainable construction materials as binders and alkaline solution as alkaline activator. This paper presents the strength characteristics of geopolymer concrete (GPC) developed with fly ash and GGBS as binders, combined Sodium silicate ($Na_2SiO_3$) and Sodium Hydroxide (NaOH) solution as alkaline activators. The parameters considered in this research work are proportions of fly ash and GGBS (70-30 and 50-50), curing conditions (Outdoor curing and oven curing at $600^{\circ}C$ for 24 hours), two grades of concrete (GPC20 and GPC50). The mechanical properties such as compressive strength, split tensile strength and flexural strength along with durability characteristics were determined. For studying the durability characteristics of geopolymer concrete 5% $H_2SO_4$ solutions was used and the specimens were immersed up to an exposure period of 56 days. The main parameters considered in this study were Acid Mass Loss Factor (AMLF), Acid Strength Loss Factor (ASLF) and products of degradation. The results conclude that GPC with sufficient strength can be developed even under Outdoor curing using fly ash and GGBS combination i.e., without the need for any heat curing.

A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

  • Akbari, M.;Khoshahval, F.;Minuchehr, A.;Zolfaghari, A.
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.951-960
    • /
    • 2013
  • Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that $UO_2-PuO_2$ (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the $UO_2$ fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of $H_2O$ moderated $UO_2-PuO_2$ (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

정체성 수역 퇴적물 재활용을 위한 고형화 평가 (The Evaluation on Solidification of Dredged Sediment for Recycle from Stagnant Water Area)

  • 김상현;안태웅;최이송;오종민
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.63-69
    • /
    • 2012
  • Sediment has been increasingly acknowledged as a carrier in water system and an available contamination. For this reason, dredging of sediment in reservoir to remediate water quality and secure storage capacity is conducted annually. However, disposal of numerous dredged sediment is necessary as a secondary problem. Currently, in Korea, dredged sediment is classified as waste to be reclamated or recycled into sandy soil, however, they are still in trouble because of spacial and environmental problem. Therefore, rather than simple disposal or reuse into sandy soil, it is necessary to research on method to manage main cause of pollution and increase the value as a resource. In this study, we intend to develop a recycle technology for numerous dredged sediment produced by dredging in deteriorated reservoirs using solidificator (stabilizer). To achieve this, we will consider utilization of dredged sediment and evaluation of use possibility as natural recycle by analysis the characteristics of soil-solidificator mixture in terms of physicochemical properties and the mixing ratio between sediment and solidificator.

Optimal Operation for Green Supply Chain Considering Demand Information, Collection Incentive and Quality of Recycling Parts

  • Watanabe, Takeshi;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • 제13권2호
    • /
    • pp.129-147
    • /
    • 2014
  • This study proposes an optimal operational policy for a green supply chain (GSC) where a retailer pays an incentive for collection of used products from customers and determines the optimal order quantity of a single product under uncertainty in product demand. A manufacturer produces the optimal order quantity of product using recyclable parts with acceptable quality levels and covers a part of the retailer's incentive from the recycled parts. Here, two scenarios for the product demand are assumed as: the distribution of product demand is known, and only both mean and variance are known. This paper develops mathematical models to find how order quantity, collection incentive of used products and lower limit of quality level for recycling affect the expected profits of each member and the whole supply chain under both a decentralized GSC (DGSC) and an integrated GSC (IGSC). The analysis numerically compares the results under DGSC with those under IGSC for each scenario of product demand. Also, the effect of the quality of the recyclable parts on the optimal decisions is shown. Moreover, supply chain coordination to shift the optimal decisions of IGSC is discussed based on: I) profit ratio, II) Nash bargaining solution, and III) Combination of (I) and (II).