• Title/Summary/Keyword: Recycled paper

Search Result 586, Processing Time 0.027 seconds

Quantitative Analysis of Heavy Metals in Packaging Papers

  • Jo, Byoung-Muk;Jeong, Myung-Joon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.45-51
    • /
    • 2007
  • This study was carried out to investigate various heavy metal contents in packaging papers by pre-treatments for ICP-ES (Inductively Coupled Plasma Emission Spectrometry) analysis. Pre-treatment methods of heavy metals in this study include extraction, migration and decomposition methods (dry ashing, $HNO_3-HClO_4-HF,\;HNO_3,\;and\;H_2SO_4-HNO_3$). Test results were compared with conventional extraction (water) and migration (3% acetic acid) methods. The five representative heavy metals (Cd, As, Pb, Cr and Hg) were analyzed. For Cd, Hg, and As, the results were below detection limit of the instrumental technique. It was considered that the migration test was a better method compared to extraction test, but all the decomposition methods showed much higher detection values than the extraction or migration test. In case of recycled corrugated containers, 3% acetic acid solution extracted about 25% of chromium and 30% of lead compared to the content by decomposition methods. Among all decomposition methods, the nitric acid - perchloric acid - hydrofluoric acid treatment brought a slightly higher detection value than others, but there was no significant difference among them except sulfuric acid - nitric acid method.

A Study on Applicability of Citrus Sludge for the Manufacture of Corrugated Medium (골심지 제조를 위한 감귤 착즙 슬러지의 적용성 평가)

  • Lee, Tai-Ju;Kim, Hyoung-Jin;Lee, Chang-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.47-53
    • /
    • 2010
  • It is important to utilize the citrus sludge in terms of the reuse of waste materials in the manufacture of corrugated medium. Especially, the mandarin industry occupies the first place in Jeju province. In this paper, the application of citrus sludge mixed with KOCC recycled fibers into the manufacture of corrugated medium was studied. The citrus sludge was acidic in pH value. Also, the constituents of citrus sludge contain some short fibers, fines, and mucus which contain flavonoids, pectins and so on. In papermaking application, these components cause some troubles like foams, bad smell, fouling on the paper machine, and bad drainage and web breaks of wet web. The strength properties of handsheets prepared from KOCC and citrus sludge was decreased, compare to handsheets made of only KOCC. To compensate the problems on strength properties, some kinds of additives were tried to apply into papermaking wet-end system in laboratory scale. As a result, mixing conditions of alum, starch and anionic additives showed the best options in the recovery of strength properties and formations of corrugated medium.

Study on the Properties of Concrete Using Crushed Sand (부순모래를 사용한 콘크리트의 특성에 관한 연구)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Han, Chon-Goo;Yoon, Ki-Won;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.83-92
    • /
    • 2006
  • Recently, interest grew recently on the quality of aggregates following the diminution of primary resources from river and the growing construction demand which exhausted high-quality sand sources around large cities and incited the use of low grade aggregates like shore sand and sea sand that can be supplied in natural state. Especially, the environmental preservation concern and the augmentation of public grievance about the exploitation of sea sand as substitute to river sand are gradually impeding the supply. This situation aggravated by the recent interdiction to extract sea sand which resulted in sand crisis that even led once to the suspension of construction works. The lack of sea sand and river sand increased the exploitation of crushed sand which occupies now nearly 20% of the whole quantity of fine aggregates. And, the use of crushed sand may be expected to grow continuously in the future. This paper described that the properties of crushed sand and the concrete using the crushed sand, the technologies to improve quality of crushed sand and the concrete in order to provide information for the production of high-quality concrete using crushed sand.

  • PDF

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF

Properties of Fresh State and Characteristics of Shrinkage in Concrete Containing Low Fineness GGBFS (저분말도 고로슬래그 미분말을 혼입한 콘크리트의 굳지 않은 상태의 특성 및 수축 특성)

  • Kim, Tae-Hoon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • GGBFS(Ground Granulated Blast Furnace Slag) is one of the most actively used mineral admixtures with excellent long-aged strength and chloride diffusion resistance. Unlike Standard covering GGBFS in Japan and the U.K., the domestic standard for GGBFS does not contain low fineness of GGBFS under 4000 grade. In this paper, several basic tests are carried out for the concrete with 3,000 grade GGBFS concrete and ternary blended concrete for reducing hydration heat by mixing 4,000 grade GGBFS and fly ash, such as fresh concrete properties, compressive strength, and shrinkage properties. The air content and slump between the ternary blended concrete and the concrete with low-fineness GGBFS showed the similar level, and the results of difference in setting time from them were less than 20 minutes, showing no significant difference. In the evaluation of compressive strength and shrinkage characteristics, the ternary blended concrete showed lower long-aged strength and higher shrinkage than the low-fineness GGBFS concrete.

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker (포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가)

  • Choi, Sang-Hyeon;Park, Byoung-Sun;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2020
  • Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

Mechanical Performance Evaluation in Concrete Impregnated with Silicate for TiO2 Utilization (광촉매 활용을 위한 실리케이트 기반 표면 침투제를 적용한 콘크리트의 역학적 성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.108-114
    • /
    • 2018
  • Degradations of durability and aesthetic performance in concrete happen during service life due to surface deterioration and dirt stains. Recently, many researches have been performed on self-cleaning and surface enhancement through surface impregnant using photocatalytic reaction with VOCs(Volatile Organic Compounds) removal. This paper is for preliminary study on surface impregnation with silicate and photocatalysis - $TiO_2$. For the work, two types of silicate based impregnants(CS - Coloidal Silica and SC - Sodium Alumina Silicate) are considered. Several tests for viscosity and surface tension are performed, and pull-off test on impregnated concrete is performed. For the surface impregnated concrete, $TiO_2$ is absorbed through submerging and spraying conditions. Through compressive strength test and SEM analysis, it is evaluated that spraying $TiO_2$ on surface impregnated concrete after 30min. of drying period is very effective both for strength enhancement and surface densification.

Strength Characteristic and Color Difference Analysis of Cement Mortar According to the Amount of Liquefied Red Mud (액상화 레드머드의 첨가량에 따른 시멘트 모르타르의 강도특성 및 색차 분석)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.146-152
    • /
    • 2018
  • In the construction sector, new demands for aesthetics are increasing due to structural stability and improvement of living standard and consciousness level. On the other hand, Red Mud sludge is generated from aluminum hydroxide extraction process from Bauxite. Red mud sludge contains about 20% of $Fe_2O_3$ and represents a natural reddish brown. It is highly applicable to the construction industry. In this paper, red mud sludge with a water content of 50%, which is a by - product of the industry, was prepared as a liquid phase. The liquefied red mud was added to cement mortar and the strength and color difference of cement mortar were investigated according to the addition amount of liquefied red mud. As a result, the compressive strength decreased with increasing amount of liquefied red mud. The color of cement mortar containing liquefied red mud was found to be distributed in the range of YR series in all samples. As the amount of liquefied red mud increased, the color became darker.

An Experimental Study on Bottom Ash for Utilization of Subbase Materials (저회의 성토재료 활용성에 대한 실험적 연구)

  • Jung, Sang-Hwa;Choe, Myong-Jin;Lee, Bong-Chun;Choi, Young-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, many researches on bottom ash which is produced in the burning process of power plant are actively performed for its utilization for soil-subbase materials. In this paper, bottom ashes from 5 different power plants are prepared and several tests including compaction, CBR, and tri-axial compression are carried out for mixed bottom ash and weathered soil considering 3 replacement ratio of 30%, 50%, and 70%. Through the tests, CBR result over 20 are evaluated without plastic property, which shows availability of subbase material. With higher increase in replacement ratio of bottom ash, CBR of mixed soil increases due to the higher mechanical performance of bottom ash. However, replacement effects of bottom ash on friction angle and cohesion are evaluated to be little since bottom ash plays a little role in rearrangement of mixed soil. Bottom ash with a good mechanical property is evaluated to have reasonable bearing capacity which shows a good property for subbase materials.

  • PDF

A Study on the Rheology Properties for Development of Sprayed High Performance Fiber Reinforced Cementitious Composites for Protection and Blast Resistant (방호·방폭용 뿜칠형 고성능 섬유보강 시멘트 복합재료 개발을 위한 레올로지 특성 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Park, Man-Seok;Sung, Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.188-195
    • /
    • 2014
  • This paper was evaluated the rheology properties according to each step of paste, mortar and HPFRCC as a part of the basic study to development of sprayed high performance fiber reinforced cementitious composites(HPFRCC) for protection and blast resistant. Rheology test results in step of paste, in case of GGBFs and FA, it showed that the plastic viscosity and yield stress reduced gradually according to the increase of mixing rate, and in case of SF, the plastic viscosity and yield stress increased radically starting from the mixing rate of 10%. Rheology test results in step of mortar, type of aggregates, it showed that particle shape and grading of aggregate is influence on plastic viscosity and yield stress, and change of volume ratio is influence on plastic viscosity than yield stress. Fluidity and rheology test results in step of HPFRCC, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer.