• Title/Summary/Keyword: Recycled paper

Search Result 586, Processing Time 0.032 seconds

Recycled Clothes and Its Characters Impact on Consumers' Consumption (재활용 의류와 그 특성이 소비자의 소비에 미치는 영향)

  • He, Luyao;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.159-167
    • /
    • 2021
  • The increasingly severe environmental problems such as resource depletion and ecological damage, and consumers' concern for sustainable fashion, make the fashion industry chain develop towards green energy saving. The purpose of this study is to explore the attitude and consumption psychology of specific groups towards sustainable fashion consumption, as well as their specific views and attitudes towards recycled textiles or fabrics for re-manufacturing clothing. This paper attempts to understand how the characteristics of recycled clothing affect consumer. Based on the review of relevant literature, a series of determinants affecting consumer behavior is determined, and the characteristics of recycled products, such as expression value and social value, are determined. An online questionnaire was designed based on this conceptual framework, and 226 valid, complete answers were received. The results show that the emphasis on social value and environmental protection consciousness can effectively affect consumers' decision-making. These findings were helpful to the research of whole green environmental protection and ecological clothing recycling industry system, promote the sustainable development of the clothing industry.

Comprehensive Review of the Evolution and Key Amendments in the 16th Regulation on Quality Certification and Management of Recycled Aggregate (순환골재 품질인증 및 관리에 관한 규칙 16차 개정연혁 및 개정내용에 대한 고찰)

  • Jeon, Soo-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.739-750
    • /
    • 2023
  • The quality certification for recycled aggregate is governed by the Construction Waste Recycling Promotion Act, overseen by the Ministry of Environment. The specific criteria for this certification are detailed in the Regulations on Quality Certification and Management of Recycled Aggregate, a mandate of the Ministry of Land, Infrastructure, and Transport. These regulations were initially enacted on April 10, 2006, and have undergone a total of 16 revisions to date, the most recent being on December 23, 2021. This paper delves into the revision history of these pivotal regulations pertaining to quality certification over the past 17 years, with a particular focus on the latest revision, which encompasses significant changes, including those in follow-up management. This analysis aims to aid stakeholders in the recycled aggregate sector, including 402 certified companies, in comprehensively understanding the government's strategic direction for quality certification and to encourage the recycling of construction waste by bolstering the quality certification process.

Performance Evaluation of Quality-Improved Recycled Aggregate Using Ultrasonic Wave and Chemical Neutralization Reaction (초음파 세척 및 화학적 중화반응을 이용한 품질 개선된 순환골재의 성능 평가)

  • Jay Jang-Ho Kim;Young-Jun You
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • This paper presents experimental research results to evaluate the applicability of chemical neutralization reaction and ultrasonic wave to remove cement paste and mortar attached to the surface of recycled aggregate. In order to derive optimal ultrasonic cleaning efficiency and chemical neutralization reaction, experiments were conducted using variables such as ultrasonic frequency and type of chemical solution. As a result, the optimal frequency was found to be 24 kHz, and immersion in a 15% hydrochloric acid solution for 30 minutes of stimulation showed the highest efficiency. In addition, the specific gravity, absorption rate, and wear rate of the quality-improved recycled coarse aggregate were similar to those of general aggregate and were found to satisfy all KS F 2527 standards. Therefore, it is believed that the recycled aggregate whose quality has been improved through the method proposed in this study can be used for concrete.

Study on Drainage and Physical Properties of KOCC Handsheet Containing Pretreated Wooden Fillers (전처리 목질계 충전제를 이용한 KOCC 수초지의 탈수속도와 물성 변화)

  • Chae, Hee-Jae;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.21-29
    • /
    • 2011
  • Recently, the use of recycled fibers was increased in order to replace the virgin pulp for low production cost and forest conservation. However, the recycled fibers decreases drainage rate, papermaking efficiency and product quality by short fibers and low wettability because of hornification. To overcome the limitation of low drainage rate, the technology of organic fillers were applied. Wooden fillers gave high bulk and stiffness of paper, but they reduced the strength of paper. In order to improve strength properties 4 types of strength additives were added and analyzed. Cationic starch, branched strength additive, linear wet strength additive, and linear dry strength additive were used. The drainage rate and paper properties such as bulk, air permeability and tensile strength were measured. As results of analysis, addition of branch type of strength agent such as C-starch was effective than linear type of strength agent in the drainage rate. Nevertheless there was no effect on the drainage rate by adding the pretreated wooden fillers. By adding the pretreated wooden fillers, bulk, air permeability and tensile strength of handsheets were improved with low dosage than non-pretreated fillers.

The Time Dependent Deflection Characteristics and Evaluation of Reinforced Recycled Aggregate Concrete Beams (순환골재를 사용한 철근콘크리트 보의 장기 처짐 특성 및 평가)

  • Ji, Sang-Kyu;Yun, Hyun-Do;Kim, Sun-Woo;Lee, Eon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • This paper presents experimental and analytical results on the long-term behavior of the reinforced recycled aggregate concrete beams under sustained loading. In this experimental program, three beams with different conditions of aggregates replacement (natural aggregate 100%, recycled coarse aggregate 100%, recycled fine aggregate 50%) were subjected to the sustained flexural loading that was a half of the nominal flexural capacity over a period of 1 year. The beam were designed with net span of 2,000 mm and rectangular cross-section of 170 mm width and 170 mm effective depth. The beams were instrumented and monitored to observe the change in the long-term behavior due to creep and shrinkage of concrete under sustained loading. The predictions of long-term deflection by ACI code, Branson, Mayer, Neville, EMM and AEMM were compared with the experimental results. From the experimental results, the reinforced concrete beams with recycled aggregates showed the same performance as that of a beam with natural aggregate. The proposed method to predict the long-term deflections of reinforced recycled aggregate concrete beams gives a good estimation for experimental results.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

Evaluation of Permanent Deformation Characteristics of Recycled Asphalt Concretes Made by Improved Binder-Rejuvenation (바인더 회생방식을 개선한 재생 아스팔트 콘크리트의 소성변형 특성 연구)

  • Kim Kwang-Woo;Kweon Oh-Sun;Doh Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.1-13
    • /
    • 2006
  • This paper is one of the studies for developing new methodologies for improving performance of hot-mix recycled asphalt mixtures. The objective of this study is to evaluate rut-resistance characteristics of recycled asphalt mixture which was prepared by newly developed mixing method. The new mixing method provided more sufficient rejuvenation of old binder of reclaimed asphalt pavement (RAP), making homogeneous binder viscosity level in a recycled mixture. Two aggregates (gneiss and granite), two RAP contents (15% and 30%) and two contents (none and 6%) of polymer modifier (LDPE) were used. Recycled mixture was prepared with two methods; method A and method F. To examine difference of binder oxidation level by type of material within a recycled mixture, Gel-permeation chromatography(GPC) analysis was performed on the binders mixed with coarse aggregates and matrix separately. Laboratory tests were performed for evaluation of rut resistance characteristics of each recycled mixture and these includes wheel tracking (WT) test and Kim test. Rut depth and dynamic stability were obtained from WT test and deformation strength $(S_D)$ was obtained from Kim test. The results of regression analysis was shown that correlation $(R^2)$ of F mixing mixtures was higher than one of A mixing mixtures. Therefore, F mixing mixtures showed more consistent rut resistance than h mixing mixtures.

  • PDF

Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement (전단 보강되지 않은 실규모 순환 잔골재 콘크리트 보의 전단성능)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • This paper presents the test results on the shear performance of large-size reinforced concrete beams using recycled fine aggregate to evaluate its applicability to structural concrete. The performance of these beams is compared to that of similar beams casted with natural coarse and fine aggregates. All of the beam specimens without shear reinforcement had $400mm{\times}600mm$ rectangular cross section and a shear span ratio (a/d) of 5.0. Five concrete mixtures with different replacement levels of recycled fine aggregates (0, 30, 60, 70 and 100%) were used to obtain a nominal concrete compressive strength of 28MPa. The test results of load-deflection curve, shear deformation, diagonal cracking load, crack pattern, ultimate shear strength, and failure mode are examined and compared. In addition, code and empirical equations from KCI, JSCE, CSA, Zsutty, and MCFT were considered to evaluate the applicability of these equations for predicting shear strength of reinforced concrete beam with recycled fine aggregate. The results showed that the overall shear behavior of reinforced concrete beams incorporating less than 60% recycled fine aggregate was comparable with that of conventional concrete beam. The MCFT gave good prediction and other code equations were conservative in predicting the shear strength of the tested beams. The beam specimens with replacement of 70 and 100% of natural fine aggregates by recycled fine aggregates showed different failure mode than other tested beams.

The Strength and Length Change Properties of Recycled Aggregate Concrete(RAC) by Compressive Strength Levels (압축강도 수준별 순환골재 콘크리트의 강도와 길이변화 특성)

  • Lee, Bong-Chun;Lee, Jun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • This paper addresses mechanical properties and length change performance of the recycled aggregate concretes(RAC) in which natural coarse was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Physical/Mechanical properties of RAC were tested for slump test, compressive strength, and length change. The test results indicated that the workability of RC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. However, the length change ratio by the RCA replacement ratios increased regardless of compressive strength levels. At 20 MPa level, the length change ratio was 8~40% which was much higher than that of 4~17% at both 35 and 50 MPa levels. Therefore, it was considered that such admixture addition preventing dry shrinkage is required in order to improve the properties of the RAC at 20 MPa level.