• Title/Summary/Keyword: Recycled materials

Search Result 914, Processing Time 0.022 seconds

Development of a Process Technique for Heavy Metal Removal in the Production of Recycled Synthetic Resin Materials (재생 합성수지 원료생산을 위한 중금속 이물질 제거 공정기술 개발)

  • Kim, Jung-Ho;Cha, Cheon-Seok;Kim, Jae-Yeol;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Recycled synthetic resin materials produced from waste vinyl and waste plastic contain many foreign substances. Plastic products made from this recycled resin materials containing foreign substances are of poor quality, with reduced the strength and rigidity. Foreign substances include heavy metals, cement, foil, dyed paper and dust. In this study, the scratch-Dies process; which remove foreign sbustances, with precision and automation, through a three-stage mesh filter, is designed. The process is evaluated with finite element analysis according to vibration loading and make. After installing the manufactured equipment, recycled resin was producde, and its heavy metal content was evaluated. Recycled synthetic resin materials were also used plastic products and evaluate their strength. In addition, the change in production was assessed.

A Study on Rational Evaluation of Recycled Aggregates Extracted from Demolished Concrete (폐콘크리트로부터 재생된 골재의 합리적 평가에 관한 연구)

  • 송하원;변근주;하주형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.3-12
    • /
    • 2000
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregates is becoming serious. Therefore, recycling of aggregates extracted from the demolished concrete is getting important and use of the recycled aggregates for concrete has been seriously considered. However, the use of the recycled aggregates even for low performance concretes is very limited because there are few rational standard evaluation criteria for recycled aggregates which should be different from that for natural aggregates. In this study, rational evaluation criteria for the recycled aggregates are proposed for their use as concrete aggregates. The study also shows that the performance for both the recycled aggregates and the recycled concrete manufactured with the recycled aggregates can be evaluated effectively according to water absorption ratio of recycled aggregates.

Study on the Sound Absorbing Characteristics of Recycled Materials -Based on used Paper and Cigarette Filters- (재생 자원의 흡음특성에 관한 연구 -폐지와 담배필터를 중심으로-)

  • 최창하;조해용;이주민
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.9-12
    • /
    • 2001
  • In this study, development of new sound absorbent which is safety, economical and efficient with using recycled materials is tried for substitution of commercial sound absorbent. The sound absorbents, used in this investigation, were made of used paper or filters of cigarette butts. With the variation of the material densities, sound absorptions of materials were measured. The impedance tube method is used for measuring sound absorption coefficient of the new sound absorbent materials. The measured frequency range was 250Hz to 4000Hz in 1/3 octave band. The sound absorption coefficient of the commercial materials and that of the materials synthesized in the our laboratory show almost same value.

  • PDF

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

Mutual Solubility of Mn and Fe in AZ91 Alloy Melts and Its Application to Composition Control of AZ91D Recycled Ingots (AZ91 합금 용탕내 Mn과 Fe의 상호용해도 측정 및 AZ91D 재생지금의 성분조정에의 활용)

  • Kwon, Soon-Il;Byun, Ji-Young;Kim, Seon-Jin;Shim, Jae-Dong
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.619-624
    • /
    • 2003
  • This paper describes a method to control Mn and Fe contents in recycled AZ91D ingots, based on the mutual solubility of Mn and Fe in AZ91 alloy melts. For this purpose, Fe solubility with the change of Mn content and temperature was investigated in the homogenized and re-precipitated liquid AZ91 alloy. The increase of the amount of Mn added to the melt resulted in the decrease of Fe content. The data obtained in this study was adopted to the pilot plant for recycling of the scrap. As a result, Mn and Fe contents measured in the recycled ingot were in good agreement with ASTM B93 standard.

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

Evaluation of Mechanical Properties of Molding Materials Recycled Using Film Packaging Wastes (폐필름 포장재 재활용 성형재료의 역학적 특성 평가)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Yang, Keun-Hyeok;Yoon, Hyun-Sub
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.342-348
    • /
    • 2018
  • The present study examined the various strength and deformation performances of molding materials recycled using film packaging wastes to ascertain the their applicability to secondary products in construction industries. The stress-strain relationships of molding materials were measured under compression, tension, and flexure in accordance with the ASTM procedure. The measured mechanical properties of recycled molding materials were comparable to typical ranges observed in low-density polyethylene and/or high-density polyethylene. However, to stabilize the properties of the molding materials, further management systems are required as follows: 1) evaluation of mechanical properties of materials with respect to various mixing proportions of waste ingredients; 2) estimation of the effect of foreign substance and moisture contents on the mechanical properties; and 3) establishment of comprehensive database including various sources such as manufacture process including applied pressure to produce the molding materials, and collection region and time of wastes.

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.